{"title":"链接预测的时态多模态知识图生成。","authors":"Yuandi Li, Hui Ji, Fei Yu, Lechao Cheng, Nan Che","doi":"10.1016/j.neunet.2024.107108","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal Multi-Modal Knowledge Graphs (TMMKGs) can be regarded as a synthesis of Temporal Knowledge Graphs (TKGs) and Multi-Modal Knowledge Graphs (MMKGs), combining the characteristics of both. TMMKGs can effectively model dynamic real-world phenomena, particularly in scenarios involving multiple heterogeneous information sources and time series characteristics, such as e-commerce websites, scene recording data, and intelligent transportation systems. We propose a Temporal Multi-Modal Knowledge Graph Generation (TMMKGG) method that can automatically construct TMMKGs, aiming to reduce construction costs. To support this, we construct a dynamic Visual-Audio-Language Multimodal (VALM) dataset, which is particularly suitable for extracting structured knowledge in response to temporal multimodal perception data. TMMKGG explores temporal dynamics and cross-modal integration, enabling multimodal data processing for dynamic knowledge graph generation and utilizing alignment strategies to enhance scene perception. To validate the effectiveness of TMMKGG, we compare it with state-of-the-art dynamic graph generation methods using the VALM dataset. Furthermore, TMMKG exhibits a significant disparity in the ratio of newly introduced entities to their associated newly introduced edges compared to TKGs. Based on this phenomenon, we introduce a Temporal Multi-Modal Link Prediction (TMMLP) method, which outperforms existing state-of-the-art techniques.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107108"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal multi-modal knowledge graph generation for link prediction.\",\"authors\":\"Yuandi Li, Hui Ji, Fei Yu, Lechao Cheng, Nan Che\",\"doi\":\"10.1016/j.neunet.2024.107108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temporal Multi-Modal Knowledge Graphs (TMMKGs) can be regarded as a synthesis of Temporal Knowledge Graphs (TKGs) and Multi-Modal Knowledge Graphs (MMKGs), combining the characteristics of both. TMMKGs can effectively model dynamic real-world phenomena, particularly in scenarios involving multiple heterogeneous information sources and time series characteristics, such as e-commerce websites, scene recording data, and intelligent transportation systems. We propose a Temporal Multi-Modal Knowledge Graph Generation (TMMKGG) method that can automatically construct TMMKGs, aiming to reduce construction costs. To support this, we construct a dynamic Visual-Audio-Language Multimodal (VALM) dataset, which is particularly suitable for extracting structured knowledge in response to temporal multimodal perception data. TMMKGG explores temporal dynamics and cross-modal integration, enabling multimodal data processing for dynamic knowledge graph generation and utilizing alignment strategies to enhance scene perception. To validate the effectiveness of TMMKGG, we compare it with state-of-the-art dynamic graph generation methods using the VALM dataset. Furthermore, TMMKG exhibits a significant disparity in the ratio of newly introduced entities to their associated newly introduced edges compared to TKGs. Based on this phenomenon, we introduce a Temporal Multi-Modal Link Prediction (TMMLP) method, which outperforms existing state-of-the-art techniques.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"185 \",\"pages\":\"107108\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.107108\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107108","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Temporal multi-modal knowledge graph generation for link prediction.
Temporal Multi-Modal Knowledge Graphs (TMMKGs) can be regarded as a synthesis of Temporal Knowledge Graphs (TKGs) and Multi-Modal Knowledge Graphs (MMKGs), combining the characteristics of both. TMMKGs can effectively model dynamic real-world phenomena, particularly in scenarios involving multiple heterogeneous information sources and time series characteristics, such as e-commerce websites, scene recording data, and intelligent transportation systems. We propose a Temporal Multi-Modal Knowledge Graph Generation (TMMKGG) method that can automatically construct TMMKGs, aiming to reduce construction costs. To support this, we construct a dynamic Visual-Audio-Language Multimodal (VALM) dataset, which is particularly suitable for extracting structured knowledge in response to temporal multimodal perception data. TMMKGG explores temporal dynamics and cross-modal integration, enabling multimodal data processing for dynamic knowledge graph generation and utilizing alignment strategies to enhance scene perception. To validate the effectiveness of TMMKGG, we compare it with state-of-the-art dynamic graph generation methods using the VALM dataset. Furthermore, TMMKG exhibits a significant disparity in the ratio of newly introduced entities to their associated newly introduced edges compared to TKGs. Based on this phenomenon, we introduce a Temporal Multi-Modal Link Prediction (TMMLP) method, which outperforms existing state-of-the-art techniques.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.