{"title":"注意力有节奏地塑造感官调谐。","authors":"Laurie Galas, Ian Donovan, Laura Dugué","doi":"10.1523/JNEUROSCI.1616-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20 Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22 h psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms. Participants (male/female) performed a task in which covert spatial (sustained and exploratory) attention was manipulated and then probed at various delays. Our results show that sustained and exploratory attention periodically modulate perception via different neural computations. While sustained attention suppresses distracting stimulus features at the alpha (∼12 Hz) frequency, exploratory attention increases the gain around task-relevant stimulus feature at the theta (∼6 Hz) frequency. These findings reveal that both modes of rhythmic attention differentially shape sensory tuning, expanding the current understanding of the rhythmic sampling theory of attention.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attention Rhythmically Shapes Sensory Tuning.\",\"authors\":\"Laurie Galas, Ian Donovan, Laura Dugué\",\"doi\":\"10.1523/JNEUROSCI.1616-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20 Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22 h psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms. Participants (male/female) performed a task in which covert spatial (sustained and exploratory) attention was manipulated and then probed at various delays. Our results show that sustained and exploratory attention periodically modulate perception via different neural computations. While sustained attention suppresses distracting stimulus features at the alpha (∼12 Hz) frequency, exploratory attention increases the gain around task-relevant stimulus feature at the theta (∼6 Hz) frequency. These findings reveal that both modes of rhythmic attention differentially shape sensory tuning, expanding the current understanding of the rhythmic sampling theory of attention.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.1616-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1616-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20 Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22 h psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms. Participants (male/female) performed a task in which covert spatial (sustained and exploratory) attention was manipulated and then probed at various delays. Our results show that sustained and exploratory attention periodically modulate perception via different neural computations. While sustained attention suppresses distracting stimulus features at the alpha (∼12 Hz) frequency, exploratory attention increases the gain around task-relevant stimulus feature at the theta (∼6 Hz) frequency. These findings reveal that both modes of rhythmic attention differentially shape sensory tuning, expanding the current understanding of the rhythmic sampling theory of attention.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles