Alexandra Bourgois , Guillaume Cosler , Diane Riccobono , Clélia Le Gallic , Sabine François , Anne Van der Meeren
{"title":"DTPA与抗炎药物联合减轻巨噬细胞pu诱导的体外反应。","authors":"Alexandra Bourgois , Guillaume Cosler , Diane Riccobono , Clélia Le Gallic , Sabine François , Anne Van der Meeren","doi":"10.1016/j.tiv.2025.106007","DOIUrl":null,"url":null,"abstract":"<div><div>Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro.</div><div>Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39. Their bioavailability was determined using a biphasic acellular model. Treatment effects on Pu dissolution and release as well as on Pu-induced pro-inflammatory response were assessed over 7 days on macrophage-like cells.</div><div>DTPA treatment, associated or not with anti-inflammatory drug, increased Pu dissolution and release from contaminated THP-1 differentiated cells after 7 days. Significant decreases in Pu-induced IL-8 and MCP-1 secretions were also observed with anti-inflammatory treatment associated or not with DTPA.</div><div>This study highlighted the ability of DTPA to partially dissolve a poorly soluble form of Pu as well as the ability of anti-inflammatory drugs to modulate Pu-induced pro-inflammatory response in macrophage-like cells. These treatments seem a promising strategy to improve the clinical management of Pu pulmonary contaminations and to limit delayed pulmonary pathology occurrence.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"104 ","pages":"Article 106007"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DTPA and anti-inflammatory drug associations to alleviate Pu-induced response of macrophages in vitro\",\"authors\":\"Alexandra Bourgois , Guillaume Cosler , Diane Riccobono , Clélia Le Gallic , Sabine François , Anne Van der Meeren\",\"doi\":\"10.1016/j.tiv.2025.106007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro.</div><div>Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39. Their bioavailability was determined using a biphasic acellular model. Treatment effects on Pu dissolution and release as well as on Pu-induced pro-inflammatory response were assessed over 7 days on macrophage-like cells.</div><div>DTPA treatment, associated or not with anti-inflammatory drug, increased Pu dissolution and release from contaminated THP-1 differentiated cells after 7 days. Significant decreases in Pu-induced IL-8 and MCP-1 secretions were also observed with anti-inflammatory treatment associated or not with DTPA.</div><div>This study highlighted the ability of DTPA to partially dissolve a poorly soluble form of Pu as well as the ability of anti-inflammatory drugs to modulate Pu-induced pro-inflammatory response in macrophage-like cells. These treatments seem a promising strategy to improve the clinical management of Pu pulmonary contaminations and to limit delayed pulmonary pathology occurrence.</div></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"104 \",\"pages\":\"Article 106007\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233325000013\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
DTPA and anti-inflammatory drug associations to alleviate Pu-induced response of macrophages in vitro
Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro.
Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39. Their bioavailability was determined using a biphasic acellular model. Treatment effects on Pu dissolution and release as well as on Pu-induced pro-inflammatory response were assessed over 7 days on macrophage-like cells.
DTPA treatment, associated or not with anti-inflammatory drug, increased Pu dissolution and release from contaminated THP-1 differentiated cells after 7 days. Significant decreases in Pu-induced IL-8 and MCP-1 secretions were also observed with anti-inflammatory treatment associated or not with DTPA.
This study highlighted the ability of DTPA to partially dissolve a poorly soluble form of Pu as well as the ability of anti-inflammatory drugs to modulate Pu-induced pro-inflammatory response in macrophage-like cells. These treatments seem a promising strategy to improve the clinical management of Pu pulmonary contaminations and to limit delayed pulmonary pathology occurrence.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.