人造肉对环境的影响:从摇篮到大门的生命周期评估。

IF 2.6 Q2 FOOD SCIENCE & TECHNOLOGY ACS food science & technology Pub Date : 2024-12-30 eCollection Date: 2025-01-17 DOI:10.1021/acsfoodscitech.4c00281
Derrick Risner, Patrick Negulescu, Yoonbin Kim, Cuong Nguyen, Justin B Siegel, Edward S Spang
{"title":"人造肉对环境的影响:从摇篮到大门的生命周期评估。","authors":"Derrick Risner, Patrick Negulescu, Yoonbin Kim, Cuong Nguyen, Justin B Siegel, Edward S Spang","doi":"10.1021/acsfoodscitech.4c00281","DOIUrl":null,"url":null,"abstract":"<p><p>Interest in animal cell-based meat (ACBM) as an environmentally conscious replacement for livestock production has been increasing; however, a life cycle assessment (LCA) for the existing production methods of ACBM has not been conducted. Currently, ACBM products are being produced at a small scale, but ACBM companies are intending to scale-up production. Updated findings from recent technoeconomic assessments (TEAs) of ACBM were utilized to perform an LCA of near-term ACBM production. A scenario analysis was conducted utilizing the metabolic requirements examined in the TEAs of ACBM, and a purification factor was utilized to account for growth medium component processing. The results indicate that the environmental impact of near-term ACBM production has the potential to be significantly higher than beef if a highly refined growth medium is utilized for ACBM production. This study highlights the need to develop a sustainable animal cell growth medium that is optimized for high-density animal cell proliferation for ACBM to generate positive economic and environmental benefits.</p>","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"5 1","pages":"61-74"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental Impacts of Cultured Meat: A Cradle-to-Gate Life Cycle Assessment.\",\"authors\":\"Derrick Risner, Patrick Negulescu, Yoonbin Kim, Cuong Nguyen, Justin B Siegel, Edward S Spang\",\"doi\":\"10.1021/acsfoodscitech.4c00281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interest in animal cell-based meat (ACBM) as an environmentally conscious replacement for livestock production has been increasing; however, a life cycle assessment (LCA) for the existing production methods of ACBM has not been conducted. Currently, ACBM products are being produced at a small scale, but ACBM companies are intending to scale-up production. Updated findings from recent technoeconomic assessments (TEAs) of ACBM were utilized to perform an LCA of near-term ACBM production. A scenario analysis was conducted utilizing the metabolic requirements examined in the TEAs of ACBM, and a purification factor was utilized to account for growth medium component processing. The results indicate that the environmental impact of near-term ACBM production has the potential to be significantly higher than beef if a highly refined growth medium is utilized for ACBM production. This study highlights the need to develop a sustainable animal cell growth medium that is optimized for high-density animal cell proliferation for ACBM to generate positive economic and environmental benefits.</p>\",\"PeriodicalId\":72048,\"journal\":{\"name\":\"ACS food science & technology\",\"volume\":\"5 1\",\"pages\":\"61-74\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS food science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsfoodscitech.4c00281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/17 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsfoodscitech.4c00281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对以动物细胞为基础的肉类(ACBM)作为一种具有环保意识的牲畜生产替代品的兴趣正在增加;然而,对现有的ACBM生产方法进行生命周期评估(LCA)尚未进行。目前,ACBM产品的生产规模较小,但ACBM公司打算扩大生产规模。利用ACBM近期技术经济评估(tea)的最新发现,对近期ACBM产量进行了LCA分析。利用在ACBM的tea中检测的代谢需求进行情景分析,并使用纯化因子来解释生长介质成分处理。结果表明,如果在ACBM生产中使用高度精炼的生长培养基,那么近期ACBM生产对环境的影响可能显著高于牛肉。本研究强调了开发一种可持续的动物细胞生长培养基的必要性,该培养基对ACBM的高密度动物细胞增殖进行了优化,以产生积极的经济和环境效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental Impacts of Cultured Meat: A Cradle-to-Gate Life Cycle Assessment.

Interest in animal cell-based meat (ACBM) as an environmentally conscious replacement for livestock production has been increasing; however, a life cycle assessment (LCA) for the existing production methods of ACBM has not been conducted. Currently, ACBM products are being produced at a small scale, but ACBM companies are intending to scale-up production. Updated findings from recent technoeconomic assessments (TEAs) of ACBM were utilized to perform an LCA of near-term ACBM production. A scenario analysis was conducted utilizing the metabolic requirements examined in the TEAs of ACBM, and a purification factor was utilized to account for growth medium component processing. The results indicate that the environmental impact of near-term ACBM production has the potential to be significantly higher than beef if a highly refined growth medium is utilized for ACBM production. This study highlights the need to develop a sustainable animal cell growth medium that is optimized for high-density animal cell proliferation for ACBM to generate positive economic and environmental benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead RuBisCO Protein as an Antioxidant Emulsifier: Influence of Flavourzyme Enzymatic Modification on Oxidative Stability of Flaxseed Oil-in-Water Emulsion Physicochemical, Technological, and Structural Properties and Sensory Quality of Bread Prepared with Wheat Flour and Pumpkin (Cucurbita argyrosperma), Chayotextle (Sechium edule Root) and Jinicuil (Inga paterno Seeds) Flour Innovative Development of Kodo Millet (Paspalum scrobiculatum)-Based Functional Edible Cups Modified with Hibiscus Powder and Guar Gum: An Eco-Efficient Resource Utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1