{"title":"NF-Y转录因子家族的全基因组鉴定和分析揭示了其在烟草中的潜在作用。","authors":"Zhen Tian, Luyao Xue, Jincun Fu, Wenting Song, Baojian Wang, Jinhao Sun, Xiujiang Yue, Fanrui Cheng, Jingjing Mao, Jiangtao Chao, Dawei Wang, Shaopeng Li","doi":"10.1080/15592324.2025.2451700","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter <i>cis</i>-elements, and protein interaction network of NtNF-Ys in tobacco (<i>Nicotiana tabacum</i> L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2451700"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and analysis of the NF-Y transcription factor family reveal its potential roles in tobacco (<i>Nicotiana tabacum</i> L.).\",\"authors\":\"Zhen Tian, Luyao Xue, Jincun Fu, Wenting Song, Baojian Wang, Jinhao Sun, Xiujiang Yue, Fanrui Cheng, Jingjing Mao, Jiangtao Chao, Dawei Wang, Shaopeng Li\",\"doi\":\"10.1080/15592324.2025.2451700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter <i>cis</i>-elements, and protein interaction network of NtNF-Ys in tobacco (<i>Nicotiana tabacum</i> L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"20 1\",\"pages\":\"2451700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2025.2451700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2451700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
核因子Y (Nuclear Factor Y, NF-Y)是一类普遍存在于高等真核生物中的转录因子,通常由三个亚基组成:NF-YA、NF-YB和NF-YC。它们在植物的胚胎发育、光合作用、开花、非生物胁迫反应等重要过程中起着至关重要的作用。为了更好地了解烟草ntnf - y全基因组结构域蛋白,本文系统分析了烟草ntnf - y的蛋白质理化性质、染色体定位、合成、系统发育关系、基因组结构、启动子顺式元件和蛋白质相互作用网络。在本研究中,我们分别在烟草中鉴定出58个NtNF-Ys,并根据其系统发育关系将其划分为3个亚家族。利用RNA-seq和qRT-PCR分析了它们在叶片发育、干旱和盐碱胁迫以及ABA响应方面的组织特异性和表达模式。这些发现阐明了NtNF-Ys在调节植物叶片发育、干旱和盐碱胁迫耐受性以及ABA应答中的作用。该研究为进一步认识NtNF-Ys的作用以及鉴定植物叶片发育和干旱、盐碱胁迫耐受的潜在基因提供了新的见解。
Genome-wide identification and analysis of the NF-Y transcription factor family reveal its potential roles in tobacco (Nicotiana tabacum L.).
Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter cis-elements, and protein interaction network of NtNF-Ys in tobacco (Nicotiana tabacum L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.