{"title":"一种三螺旋半乳糖葡甘露聚糖的结构表征及抗氧化性能。","authors":"Guofeng Yu, Yuanshang Liu, Yuan Gao, Xuewei Jia, Rong Ma, Tianxiao Li, Wenning Feng, Chunping Xu","doi":"10.1615/IntJMedMushrooms.2024057484","DOIUrl":null,"url":null,"abstract":"<p><p>RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%). The main chain was mainly composed of 1,3,6-linked D-mannose and 1,6-linked glucose residues, and contained terminal glucose units and a small amount of 1,4-linked glucose and 1,6-linked galactose. The average molecular weight of RVP is approximately 8.91 ȕ 105, and it adopts a semi-rigid triple helix conformation. The antioxidant potential of RVP was initially assessed in vitro using H2O2 to induce oxidative stress in a cellular model, leading to cell damage and decreased survival rates. In comparison to the H2O2 model group, RVP exhibited substantial antioxidant activity, demonstrating a capacity to enhance cell viability in a concentration-dependent manner and notably reduce the level of malondialdehyde (MDA) in the cell supernatant, thus indicating its effectiveness in reducing lipid peroxidation. Furthermore, RVP was found to boost the activity of crucial antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the cells. Thus, RVP with antioxidant properties has broad application prospects in health and wellness.</p>","PeriodicalId":94323,"journal":{"name":"International journal of medicinal mushrooms","volume":"27 3","pages":"45-56"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Characterization and Antioxidant Properties of a Triple Helix Galactoglucomannan from the Fruiting Bodies of Russula virescens (Agaricomycetes).\",\"authors\":\"Guofeng Yu, Yuanshang Liu, Yuan Gao, Xuewei Jia, Rong Ma, Tianxiao Li, Wenning Feng, Chunping Xu\",\"doi\":\"10.1615/IntJMedMushrooms.2024057484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%). The main chain was mainly composed of 1,3,6-linked D-mannose and 1,6-linked glucose residues, and contained terminal glucose units and a small amount of 1,4-linked glucose and 1,6-linked galactose. The average molecular weight of RVP is approximately 8.91 ȕ 105, and it adopts a semi-rigid triple helix conformation. The antioxidant potential of RVP was initially assessed in vitro using H2O2 to induce oxidative stress in a cellular model, leading to cell damage and decreased survival rates. In comparison to the H2O2 model group, RVP exhibited substantial antioxidant activity, demonstrating a capacity to enhance cell viability in a concentration-dependent manner and notably reduce the level of malondialdehyde (MDA) in the cell supernatant, thus indicating its effectiveness in reducing lipid peroxidation. Furthermore, RVP was found to boost the activity of crucial antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the cells. Thus, RVP with antioxidant properties has broad application prospects in health and wellness.</p>\",\"PeriodicalId\":94323,\"journal\":{\"name\":\"International journal of medicinal mushrooms\",\"volume\":\"27 3\",\"pages\":\"45-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medicinal mushrooms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/IntJMedMushrooms.2024057484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/IntJMedMushrooms.2024057484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure Characterization and Antioxidant Properties of a Triple Helix Galactoglucomannan from the Fruiting Bodies of Russula virescens (Agaricomycetes).
RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%). The main chain was mainly composed of 1,3,6-linked D-mannose and 1,6-linked glucose residues, and contained terminal glucose units and a small amount of 1,4-linked glucose and 1,6-linked galactose. The average molecular weight of RVP is approximately 8.91 ȕ 105, and it adopts a semi-rigid triple helix conformation. The antioxidant potential of RVP was initially assessed in vitro using H2O2 to induce oxidative stress in a cellular model, leading to cell damage and decreased survival rates. In comparison to the H2O2 model group, RVP exhibited substantial antioxidant activity, demonstrating a capacity to enhance cell viability in a concentration-dependent manner and notably reduce the level of malondialdehyde (MDA) in the cell supernatant, thus indicating its effectiveness in reducing lipid peroxidation. Furthermore, RVP was found to boost the activity of crucial antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the cells. Thus, RVP with antioxidant properties has broad application prospects in health and wellness.