{"title":"NADH-O-甲基醌抑制剂是一类抗结核药物。","authors":"Dongzi Lin, Cheng Xu, Changyou Gan, Bihua Ou, Fengxian Luo, Zhigang She, Lei Zhou, Zhenhua Chen","doi":"10.1007/s11030-025-11117-6","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level. This study demonstrates that (S)-Peniphenone D possesses significant resistance to Mycobacterium marinum (M. marinum) infection, as it enables redox cycling within M. marinum cells, ROS production, and reduction of intracellular NADH levels. The results suggest that hydroquinone compounds, due to their distinctive biological activities, could serve as novel sources for antibacterial drugs, particularly in developing scaffolds for new anti-tuberculosis agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitors of NADH-O-methylquinone compound a class of antitubercular drugs.\",\"authors\":\"Dongzi Lin, Cheng Xu, Changyou Gan, Bihua Ou, Fengxian Luo, Zhigang She, Lei Zhou, Zhenhua Chen\",\"doi\":\"10.1007/s11030-025-11117-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level. This study demonstrates that (S)-Peniphenone D possesses significant resistance to Mycobacterium marinum (M. marinum) infection, as it enables redox cycling within M. marinum cells, ROS production, and reduction of intracellular NADH levels. The results suggest that hydroquinone compounds, due to their distinctive biological activities, could serve as novel sources for antibacterial drugs, particularly in developing scaffolds for new anti-tuberculosis agents.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11117-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11117-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Inhibitors of NADH-O-methylquinone compound a class of antitubercular drugs.
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level. This study demonstrates that (S)-Peniphenone D possesses significant resistance to Mycobacterium marinum (M. marinum) infection, as it enables redox cycling within M. marinum cells, ROS production, and reduction of intracellular NADH levels. The results suggest that hydroquinone compounds, due to their distinctive biological activities, could serve as novel sources for antibacterial drugs, particularly in developing scaffolds for new anti-tuberculosis agents.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;