{"title":"在宫颈癌治疗中靶向递送 SmacN7 肽诱导免疫性细胞死亡","authors":"Yan Dai, Shentao Lu, Linna Wei, Lubin Liu","doi":"10.1007/s12010-024-05129-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach. Therefore, we constructed CCTP-SmacN7, a delivery system capable of releasing active molecules in the tumor microenvironment. CCTP-SmacN7 can not only inhibit tumor proliferation and migration, but also induce tumors to produce large amounts of reactive oxygen species. The production of reactive oxygen species can activate tumors to release or expose damage-associated molecular patterns, promote DC cell maturation, and ultimately activate T cells. Here, we present an innovative targeted treatment approach for cervical cancer. While inducing tumor immunogenic cell death, this program can also improve the tumor microenvironment and initiate the tumor immune cycle.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment.\",\"authors\":\"Yan Dai, Shentao Lu, Linna Wei, Lubin Liu\",\"doi\":\"10.1007/s12010-024-05129-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach. Therefore, we constructed CCTP-SmacN7, a delivery system capable of releasing active molecules in the tumor microenvironment. CCTP-SmacN7 can not only inhibit tumor proliferation and migration, but also induce tumors to produce large amounts of reactive oxygen species. The production of reactive oxygen species can activate tumors to release or expose damage-associated molecular patterns, promote DC cell maturation, and ultimately activate T cells. Here, we present an innovative targeted treatment approach for cervical cancer. While inducing tumor immunogenic cell death, this program can also improve the tumor microenvironment and initiate the tumor immune cycle.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05129-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05129-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment.
Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach. Therefore, we constructed CCTP-SmacN7, a delivery system capable of releasing active molecules in the tumor microenvironment. CCTP-SmacN7 can not only inhibit tumor proliferation and migration, but also induce tumors to produce large amounts of reactive oxygen species. The production of reactive oxygen species can activate tumors to release or expose damage-associated molecular patterns, promote DC cell maturation, and ultimately activate T cells. Here, we present an innovative targeted treatment approach for cervical cancer. While inducing tumor immunogenic cell death, this program can also improve the tumor microenvironment and initiate the tumor immune cycle.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.