用于可穿戴热疗垫的零温度系数温度响应混合复合材料。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-19 DOI:10.3390/mi16010108
Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim, Sung-Hoon Park
{"title":"用于可穿戴热疗垫的零温度系数温度响应混合复合材料。","authors":"Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim, Sung-Hoon Park","doi":"10.3390/mi16010108","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767656/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.\",\"authors\":\"Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim, Sung-Hoon Park\",\"doi\":\"10.3390/mi16010108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16010108\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010108","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.

Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Measurement and Analysis of Interconnects' Resonance and Signal/Power Integrity Degradation in Glass Packages. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Investigation of Chip Morphology in Elliptical Vibration Micro-Turning of Silk Fibroin. Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1