Wonsun Kim, JaeWoo Park, HyeRyun Jeong, Kimin Lee, Sui Yang, Eun Ha Choi, Byoungchoo Park
{"title":"Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Photovoltaic Photodiodes.","authors":"Wonsun Kim, JaeWoo Park, HyeRyun Jeong, Kimin Lee, Sui Yang, Eun Ha Choi, Byoungchoo Park","doi":"10.3390/polym17020163","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, MAPbI<sub>3</sub>) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency (<i>PCE</i>) of 11.8% compared to 10.4% in reference devices without an interfacial layer. Moreover, applying the PAA-PI interfacial layer to the MAPbI<sub>3</sub> PVPD significantly improves the photodiode performance, increasing the specific detectivity by 49 times to 7.82 × 10<sup>10</sup> Jones compared to the corresponding results of reference devices without an interfacial layer. The PAA-PI-passivated MAPbI<sub>3</sub> PVPD also exhibits a wide linear dynamic range of ~103 dB and fast response times, with rise and decay times of 61 and 18 µs, respectively. The improved dynamic response of the PAA-PI-passivated MAPbI<sub>3</sub> PVPD enables effective weak-light detection, highlighting the potential of advanced interfacial engineering with PAA-PI interfacial layers in the development of high-performance, self-powered perovskite photovoltaic photodetectors for a wide range of optoelectronic applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020163","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CH3NH3PbI3 Photovoltaic Photodiodes.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CH3NH3PbI3, MAPbI3) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency (PCE) of 11.8% compared to 10.4% in reference devices without an interfacial layer. Moreover, applying the PAA-PI interfacial layer to the MAPbI3 PVPD significantly improves the photodiode performance, increasing the specific detectivity by 49 times to 7.82 × 1010 Jones compared to the corresponding results of reference devices without an interfacial layer. The PAA-PI-passivated MAPbI3 PVPD also exhibits a wide linear dynamic range of ~103 dB and fast response times, with rise and decay times of 61 and 18 µs, respectively. The improved dynamic response of the PAA-PI-passivated MAPbI3 PVPD enables effective weak-light detection, highlighting the potential of advanced interfacial engineering with PAA-PI interfacial layers in the development of high-performance, self-powered perovskite photovoltaic photodetectors for a wide range of optoelectronic applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.