Bin Xu, Yun Zou, Gaofeng Sha, Liang Yang, Guixi Cai, Yang Li
{"title":"基于物理信息神经网络的稀疏波场重建。","authors":"Bin Xu, Yun Zou, Gaofeng Sha, Liang Yang, Guixi Cai, Yang Li","doi":"10.1016/j.ultras.2025.107582","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time. In this work, we propose a method based on physics-informed neural networks to decrease the required sampling measurements. We utilize sparse sampling of full experimental data as input data to reconstruct complete wavefield data. Specifically, we employ physics-informed neural networks to learn the propagation characteristics from the sparsely sampled data and partition the complete grid to reconstruct the full wavefield. We achieved 95% reconstruction accuracy using four hundredth of the total measurements. The proposed method can be utilized not only for sparse wavefield reconstruction in LU testing but also for other wavefield reconstructions, such as those required in online monitoring systems.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"149 ","pages":"107582"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse wavefield reconstruction based on Physics-Informed neural networks.\",\"authors\":\"Bin Xu, Yun Zou, Gaofeng Sha, Liang Yang, Guixi Cai, Yang Li\",\"doi\":\"10.1016/j.ultras.2025.107582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time. In this work, we propose a method based on physics-informed neural networks to decrease the required sampling measurements. We utilize sparse sampling of full experimental data as input data to reconstruct complete wavefield data. Specifically, we employ physics-informed neural networks to learn the propagation characteristics from the sparsely sampled data and partition the complete grid to reconstruct the full wavefield. We achieved 95% reconstruction accuracy using four hundredth of the total measurements. The proposed method can be utilized not only for sparse wavefield reconstruction in LU testing but also for other wavefield reconstructions, such as those required in online monitoring systems.</p>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"149 \",\"pages\":\"107582\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultras.2025.107582\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2025.107582","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Sparse wavefield reconstruction based on Physics-Informed neural networks.
In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time. In this work, we propose a method based on physics-informed neural networks to decrease the required sampling measurements. We utilize sparse sampling of full experimental data as input data to reconstruct complete wavefield data. Specifically, we employ physics-informed neural networks to learn the propagation characteristics from the sparsely sampled data and partition the complete grid to reconstruct the full wavefield. We achieved 95% reconstruction accuracy using four hundredth of the total measurements. The proposed method can be utilized not only for sparse wavefield reconstruction in LU testing but also for other wavefield reconstructions, such as those required in online monitoring systems.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.