叶状结构膜可实现高效持久的辐射冷却。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-01-27 DOI:10.1039/d4mh01697a
Minghan Wu, Yu Li, Gang Huang, Ruiqi Xu, Xiaochun Yin, Guizhen Zhang
{"title":"叶状结构膜可实现高效持久的辐射冷却。","authors":"Minghan Wu, Yu Li, Gang Huang, Ruiqi Xu, Xiaochun Yin, Guizhen Zhang","doi":"10.1039/d4mh01697a","DOIUrl":null,"url":null,"abstract":"<p><p>Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges. This special leaf-like structure and the synergistic effect of the inorganic particles ensure that the PRC membrane has a high solar reflectivity of 99.3% and a high mid-infrared (MIR) emissivity of ∼95%. In addition, the membrane still maintains excellent optical and mechanical performance after ultraviolet radiation treatment with a total radiation dose of 7000 MJ m<sup>-2</sup>. Therefore, the unique structural design and excellent comprehensive performance of the membrane can greatly promote the practical applications of the PRC technology.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A leaf-like structured membrane for highly efficient and persistent radiative cooling.\",\"authors\":\"Minghan Wu, Yu Li, Gang Huang, Ruiqi Xu, Xiaochun Yin, Guizhen Zhang\",\"doi\":\"10.1039/d4mh01697a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges. This special leaf-like structure and the synergistic effect of the inorganic particles ensure that the PRC membrane has a high solar reflectivity of 99.3% and a high mid-infrared (MIR) emissivity of ∼95%. In addition, the membrane still maintains excellent optical and mechanical performance after ultraviolet radiation treatment with a total radiation dose of 7000 MJ m<sup>-2</sup>. Therefore, the unique structural design and excellent comprehensive performance of the membrane can greatly promote the practical applications of the PRC technology.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01697a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01697a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A leaf-like structured membrane for highly efficient and persistent radiative cooling.

Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges. This special leaf-like structure and the synergistic effect of the inorganic particles ensure that the PRC membrane has a high solar reflectivity of 99.3% and a high mid-infrared (MIR) emissivity of ∼95%. In addition, the membrane still maintains excellent optical and mechanical performance after ultraviolet radiation treatment with a total radiation dose of 7000 MJ m-2. Therefore, the unique structural design and excellent comprehensive performance of the membrane can greatly promote the practical applications of the PRC technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Neuromorphic devices for electronic skin applications. Optimizing optical anisotropy in low-dimensional structures via intralayer hydrogen bonding modulation and anionic substitution. A linearly programmable strategy for polymer elastomer mechanics. Critical role of pore size on perfluorooctanoic acid adsorption behaviors in carbonaceous sorbents. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1