从三维旋转血管造影虚拟三维重建复杂的先天性心脏解剖结构。

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2025-01-27 DOI:10.1186/s41205-024-00247-6
Ernesto Mejia, Shannon Sweeney, Jenny E Zablah
{"title":"从三维旋转血管造影虚拟三维重建复杂的先天性心脏解剖结构。","authors":"Ernesto Mejia, Shannon Sweeney, Jenny E Zablah","doi":"10.1186/s41205-024-00247-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.</p><p><strong>Methods: </strong>Five patients selected at random with 3DRA performed in the pediatric cardiac catheterization suite were selected. 3DRA's were performed following published institutional protocols and segmentations performed by primary operators. The 3DRA DICOM images were anonymized as per protocol and exported. Images when then processed by Axial3D Artificial Intelligence (AI) driven cloud-based platform for virtual segmentation. Two separate expert operators were selected to subjectively analyze the segmentations and compare them to the operator reconstructions for anatomic accuracy.</p><p><strong>Results: </strong>Comparing results with local reconstructions by expert operators, five different patient anatomies were analyzed, showcasing Axial3D's ability to produce highly detailed reconstructions with improved visual appeal, including color-coded segments for implanted materials like stents. The reconstructions exhibited superior segmentation of different intrathoracic structures when compared to local models, offering valuable insights for medical professionals and patients.</p><p><strong>Conclusions: </strong>The use of the AI driven, cloud-based platform for 3D visualization of complex congenital heart lesions presents a promising advancement in pediatric interventional cardiology, facilitating enhanced patient care, procedural planning, and educational opportunities for trainees and patients alike.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"4"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.\",\"authors\":\"Ernesto Mejia, Shannon Sweeney, Jenny E Zablah\",\"doi\":\"10.1186/s41205-024-00247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.</p><p><strong>Methods: </strong>Five patients selected at random with 3DRA performed in the pediatric cardiac catheterization suite were selected. 3DRA's were performed following published institutional protocols and segmentations performed by primary operators. The 3DRA DICOM images were anonymized as per protocol and exported. Images when then processed by Axial3D Artificial Intelligence (AI) driven cloud-based platform for virtual segmentation. Two separate expert operators were selected to subjectively analyze the segmentations and compare them to the operator reconstructions for anatomic accuracy.</p><p><strong>Results: </strong>Comparing results with local reconstructions by expert operators, five different patient anatomies were analyzed, showcasing Axial3D's ability to produce highly detailed reconstructions with improved visual appeal, including color-coded segments for implanted materials like stents. The reconstructions exhibited superior segmentation of different intrathoracic structures when compared to local models, offering valuable insights for medical professionals and patients.</p><p><strong>Conclusions: </strong>The use of the AI driven, cloud-based platform for 3D visualization of complex congenital heart lesions presents a promising advancement in pediatric interventional cardiology, facilitating enhanced patient care, procedural planning, and educational opportunities for trainees and patients alike.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":\"11 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-024-00247-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-024-00247-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.

Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.

Methods: Five patients selected at random with 3DRA performed in the pediatric cardiac catheterization suite were selected. 3DRA's were performed following published institutional protocols and segmentations performed by primary operators. The 3DRA DICOM images were anonymized as per protocol and exported. Images when then processed by Axial3D Artificial Intelligence (AI) driven cloud-based platform for virtual segmentation. Two separate expert operators were selected to subjectively analyze the segmentations and compare them to the operator reconstructions for anatomic accuracy.

Results: Comparing results with local reconstructions by expert operators, five different patient anatomies were analyzed, showcasing Axial3D's ability to produce highly detailed reconstructions with improved visual appeal, including color-coded segments for implanted materials like stents. The reconstructions exhibited superior segmentation of different intrathoracic structures when compared to local models, offering valuable insights for medical professionals and patients.

Conclusions: The use of the AI driven, cloud-based platform for 3D visualization of complex congenital heart lesions presents a promising advancement in pediatric interventional cardiology, facilitating enhanced patient care, procedural planning, and educational opportunities for trainees and patients alike.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography. Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine. Evaluating the value of 3D-printed bone models with fracture fragments connected by flexible rods for training and preoperative planning. Low-cost male urogenital simulator for penile implant surgery training: a 3D printing approach. Point-of-care additive manufacturing: state of the art and adoption in Spanish hospitals during pre to post COVID-19 era.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1