IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-01-28 DOI:10.1007/s11030-024-11086-2
Elora Kalita, Mamta Panda, Sarthak Dhar, Sanjana Mehrotra, Vijay Kumar Prajapati
{"title":"Pharmacoinformatics-based screening and construction of a neutralizing anti-SARS-CoV-2 camelidae nanobody drug conjugate.","authors":"Elora Kalita, Mamta Panda, Sarthak Dhar, Sanjana Mehrotra, Vijay Kumar Prajapati","doi":"10.1007/s11030-024-11086-2","DOIUrl":null,"url":null,"abstract":"<p><p>Nanobodies or variable antigen-binding domains (V<sub>H</sub>H) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database. SAbDab-nano database was screened based on the physicochemical properties and SARS-CoV-2 binding affinity of the documented nanobodies. Molecular docking, computational modeling, in silico site-directed mutagenesis, and MD simulations were performed to construct an effective nanobody bi-paratope. The construct's physicochemical properties were assessed, and its structural integrity was validated through model energy refinement and quality assessment. The triple-mutant (N78Q K116N T123F) nanobody, based on the bioinformatics analysis, exhibited enhanced binding efficiency against its targets: SARS CoV-2 WT RB (- 353.3), NRP1 (- 376.5) and Omicron RBD (- 380.8), compared to the WT nanobody (SARS CoV-2 WT RBD = - 337.5, NRP1 = - 361.5, Omicron RBD = - 359.5). In silico evaluation also predicted that the construct would demonstrate efficient solubility, high thermostability (Tm 67.4 °C), low molecular weight of 29.36 KDa, and non-toxic, non-allergenic properties. Anti-SARS-CoV-2 neutralizing nanobody-based therapeutics, as demonstrated through this computational work, represents a promising alternative to traditional COVID-19 prophylaxis.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11086-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

纳米抗体或可变抗原结合域(VHH)来源于驼科动物的纯重链抗体(HcAb),与传统抗体相比,它们具有某些优越的理化特性,如更高的稳定性、可溶性和低免疫原性。它们高效的抗原结合能力使其成为下一代小型生物制剂的首选。在本研究中,我们通过对纳米抗体数据库的筛选,设计出了一种抗 SARS-CoV-2 双副标题纳米抗体药物共轭物。我们根据纳米抗体的理化性质和与 SARS-CoV-2 的结合亲和力对 SAbDab 纳米抗体数据库进行了筛选。通过分子对接、计算建模、默克定点诱变和 MD 模拟,构建了有效的纳米抗体双配位体。对构建体的理化性质进行了评估,并通过模型能量细化和质量评估验证了其结构的完整性。根据生物信息学分析,三突变体(N78Q K116N T123F)纳米抗体对其靶标的结合效率有所提高:与 WT 纳米抗体相比,SARS CoV-2 WT RBD(- 353.3)、NRP1(- 376.5)和 Omicron RBD(- 380.8)的结合效率更高(SARS CoV-2 WT RBD = - 337.5、NRP1 = - 361.5、Omicron RBD = - 359.5)。硅学评估还预测,该构建体将表现出高效溶解性、高热稳定性(Tm 67.4 °C)、29.36 KDa 的低分子量以及无毒、无过敏性等特性。这项计算工作证明,基于抗SARS-CoV-2中和纳米抗体的疗法是替代传统COVID-19预防疗法的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pharmacoinformatics-based screening and construction of a neutralizing anti-SARS-CoV-2 camelidae nanobody drug conjugate.

Nanobodies or variable antigen-binding domains (VHH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database. SAbDab-nano database was screened based on the physicochemical properties and SARS-CoV-2 binding affinity of the documented nanobodies. Molecular docking, computational modeling, in silico site-directed mutagenesis, and MD simulations were performed to construct an effective nanobody bi-paratope. The construct's physicochemical properties were assessed, and its structural integrity was validated through model energy refinement and quality assessment. The triple-mutant (N78Q K116N T123F) nanobody, based on the bioinformatics analysis, exhibited enhanced binding efficiency against its targets: SARS CoV-2 WT RB (- 353.3), NRP1 (- 376.5) and Omicron RBD (- 380.8), compared to the WT nanobody (SARS CoV-2 WT RBD = - 337.5, NRP1 = - 361.5, Omicron RBD = - 359.5). In silico evaluation also predicted that the construct would demonstrate efficient solubility, high thermostability (Tm 67.4 °C), low molecular weight of 29.36 KDa, and non-toxic, non-allergenic properties. Anti-SARS-CoV-2 neutralizing nanobody-based therapeutics, as demonstrated through this computational work, represents a promising alternative to traditional COVID-19 prophylaxis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives. Computational framework for minimizing off-target toxicity in capecitabine treatment using natural compounds. Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer. Structural insights of AKT and its activation mechanism for drug development. Identification of effective synthetic molecules against viral-induced cytokine release syndrome using in silico and in vitro approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1