使用单个 gRNA,通过无 DNA CRISPR/Cas9 系统对大豆 ß-amyrin 合成酶基因进行同步定点诱变。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2025-01-28 DOI:10.1007/s00299-025-03433-w
Hiroki Asa, Chikako Kuwabara, Kenji Matsumoto, Ryo Shigeta, Takaaki Yamamoto, Yu Masuda, Tetsuya Yamada
{"title":"使用单个 gRNA,通过无 DNA CRISPR/Cas9 系统对大豆 ß-amyrin 合成酶基因进行同步定点诱变。","authors":"Hiroki Asa, Chikako Kuwabara, Kenji Matsumoto, Ryo Shigeta, Takaaki Yamamoto, Yu Masuda, Tetsuya Yamada","doi":"10.1007/s00299-025-03433-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.) Merril], are responsible for the astringent aftertaste of soyfood, and their complete elimination from soybean seeds is a key challenge in the development of cultivars with improved taste. While the loss of function in the ß-amyrin synthase genes (GmBAS1 and GmBAS2) has proven effective in reducing soyasaponin content in soybean seeds, the specific functional roles of these genes remain unclear. In this study, site-directed mutagenesis was performed on two GmBAS loci using a DNA-free clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system. A complex of sgRNA targeting sequences conserved in the two loci and Cas9 protein was introduced into the shoot apical meristems of soybean embryonic axes via bombardment. Cleaved amplified polymorphic sequences (CAPS) analysis conducted 1 month post-bombardment revealed that 138 seedlings out of 1,467 screened exhibited mutations at one or both GmBAS loci. CAPS and sequencing analysis in the subsequent generation identified a total of 16 plants with inheritable mutations ranging from one to ten nucleotides. High-performance liquid chromatography (HPLC) analysis showed that site-directed mutagenesis in the GmBAS1 locus resulted in the absence of soyasaponins in mature seeds, as well as in young roots, stems, and leaves. These findings demonstrate that GmBAS1 is the predominant ß-amyrin synthase gene in soybean plants. In addition, the DNA-free CRISPR/Cas9 system was shown to be highly efficient in inducing simultaneous mutagenesis at two target loci using a single gRNA.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"40"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous site-directed mutagenesis for soybean ß-amyrin synthase genes via DNA-free CRISPR/Cas9 system using a single gRNA.\",\"authors\":\"Hiroki Asa, Chikako Kuwabara, Kenji Matsumoto, Ryo Shigeta, Takaaki Yamamoto, Yu Masuda, Tetsuya Yamada\",\"doi\":\"10.1007/s00299-025-03433-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.) Merril], are responsible for the astringent aftertaste of soyfood, and their complete elimination from soybean seeds is a key challenge in the development of cultivars with improved taste. While the loss of function in the ß-amyrin synthase genes (GmBAS1 and GmBAS2) has proven effective in reducing soyasaponin content in soybean seeds, the specific functional roles of these genes remain unclear. In this study, site-directed mutagenesis was performed on two GmBAS loci using a DNA-free clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system. A complex of sgRNA targeting sequences conserved in the two loci and Cas9 protein was introduced into the shoot apical meristems of soybean embryonic axes via bombardment. Cleaved amplified polymorphic sequences (CAPS) analysis conducted 1 month post-bombardment revealed that 138 seedlings out of 1,467 screened exhibited mutations at one or both GmBAS loci. CAPS and sequencing analysis in the subsequent generation identified a total of 16 plants with inheritable mutations ranging from one to ten nucleotides. High-performance liquid chromatography (HPLC) analysis showed that site-directed mutagenesis in the GmBAS1 locus resulted in the absence of soyasaponins in mature seeds, as well as in young roots, stems, and leaves. These findings demonstrate that GmBAS1 is the predominant ß-amyrin synthase gene in soybean plants. In addition, the DNA-free CRISPR/Cas9 system was shown to be highly efficient in inducing simultaneous mutagenesis at two target loci using a single gRNA.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 2\",\"pages\":\"40\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03433-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03433-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous site-directed mutagenesis for soybean ß-amyrin synthase genes via DNA-free CRISPR/Cas9 system using a single gRNA.

Key message: We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.) Merril], are responsible for the astringent aftertaste of soyfood, and their complete elimination from soybean seeds is a key challenge in the development of cultivars with improved taste. While the loss of function in the ß-amyrin synthase genes (GmBAS1 and GmBAS2) has proven effective in reducing soyasaponin content in soybean seeds, the specific functional roles of these genes remain unclear. In this study, site-directed mutagenesis was performed on two GmBAS loci using a DNA-free clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system. A complex of sgRNA targeting sequences conserved in the two loci and Cas9 protein was introduced into the shoot apical meristems of soybean embryonic axes via bombardment. Cleaved amplified polymorphic sequences (CAPS) analysis conducted 1 month post-bombardment revealed that 138 seedlings out of 1,467 screened exhibited mutations at one or both GmBAS loci. CAPS and sequencing analysis in the subsequent generation identified a total of 16 plants with inheritable mutations ranging from one to ten nucleotides. High-performance liquid chromatography (HPLC) analysis showed that site-directed mutagenesis in the GmBAS1 locus resulted in the absence of soyasaponins in mature seeds, as well as in young roots, stems, and leaves. These findings demonstrate that GmBAS1 is the predominant ß-amyrin synthase gene in soybean plants. In addition, the DNA-free CRISPR/Cas9 system was shown to be highly efficient in inducing simultaneous mutagenesis at two target loci using a single gRNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Proteomic insights into fruit-pathogen interactions: managing biotic stress in fruit. High concentration of phosphate treatment increased the tolerance of Robinia pseudoacacia roots to salt stress. Identification and expression analysis of the RBOH gene family of Isatis indigotica Fort. and the potential regulation mechanism of RBOH gene on H2O2 under salt stress. Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). Essential role of rice ERF101 in the perception of TAL effectors and immune activation mediated by the CC-BED NLR Xa1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1