Amir Rezazadeh, Pooria Akbarzadeh, Mohammad Mohsen ShahMardan, Milad Aminzadeh
{"title":"A Novel Framework for Estimating the Bowen Ratio Over Small Water Bodies","authors":"Amir Rezazadeh, Pooria Akbarzadeh, Mohammad Mohsen ShahMardan, Milad Aminzadeh","doi":"10.1002/hyp.70055","DOIUrl":null,"url":null,"abstract":"<p>The Bowen ratio, defined as the ratio of sensible to latent heat flux, is crucial for quantifying land-atmosphere energy exchanges and evaporation rates from terrestrial surfaces. Despite extensive research on the Bowen ratio over placid water surfaces (e.g., lakes), further investigation is needed to understand its dynamics in small reservoirs subjected to water inflow/outflow (i.e., surface flows) and wind. To address this knowledge gap, the evaporation rate and the sensible heat exchanges are measured between the water surface and overlying air in a small laboratory basin under different water surface flow rates (1.0–10.5 l min<sup>−1</sup>) and wind speeds (0–2.0 m s<sup>−1</sup>). Three different wind flow conditions are explored: no wind, headwind (opposing the water surface flow), and tailwind (aligning with water surface flow). The findings indicate strong correlations between sensible heat flux, water surface flow rate, and wind speed, particularly under headwind conditions. Nevertheless, concerning the latent heat flux, the measurements demonstrate that for each wind condition, the evaporation reaches its minimum value in a certain water surface flow rate, resulting in the highest value of the Bowen ratio. To facilitate the application of these laboratory findings for estimating the Bowen ratio under real environmental conditions, mathematical relationships using dimensionless numbers obtained through non-linear regression analysis are established. The results exhibit a good agreement with measurements in a small water basin.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70055","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
A Novel Framework for Estimating the Bowen Ratio Over Small Water Bodies
The Bowen ratio, defined as the ratio of sensible to latent heat flux, is crucial for quantifying land-atmosphere energy exchanges and evaporation rates from terrestrial surfaces. Despite extensive research on the Bowen ratio over placid water surfaces (e.g., lakes), further investigation is needed to understand its dynamics in small reservoirs subjected to water inflow/outflow (i.e., surface flows) and wind. To address this knowledge gap, the evaporation rate and the sensible heat exchanges are measured between the water surface and overlying air in a small laboratory basin under different water surface flow rates (1.0–10.5 l min−1) and wind speeds (0–2.0 m s−1). Three different wind flow conditions are explored: no wind, headwind (opposing the water surface flow), and tailwind (aligning with water surface flow). The findings indicate strong correlations between sensible heat flux, water surface flow rate, and wind speed, particularly under headwind conditions. Nevertheless, concerning the latent heat flux, the measurements demonstrate that for each wind condition, the evaporation reaches its minimum value in a certain water surface flow rate, resulting in the highest value of the Bowen ratio. To facilitate the application of these laboratory findings for estimating the Bowen ratio under real environmental conditions, mathematical relationships using dimensionless numbers obtained through non-linear regression analysis are established. The results exhibit a good agreement with measurements in a small water basin.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.