Lvxing Wang , Saifei Xiang , Guangpu Ling , Jianbo Ying , Jiahui Zhou , Jintao Yang
{"title":"具有高耐热老化性和阻燃性的热塑性聚氨酯改性新策略","authors":"Lvxing Wang , Saifei Xiang , Guangpu Ling , Jianbo Ying , Jiahui Zhou , Jintao Yang","doi":"10.1016/j.polymdegradstab.2024.111140","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoplastic polyurethane (TPU) has been extensively used in many industrial communities, such as aerospace, electronics, and automotive manufacturing due to its remarkable mechanical strength, elasticity, and excellent chemical resistance. However, flammability and performance deterioration under high-temperature and high-humidity of TPU greatly limit its wider application. Herein, TPU composites with high hygrothermal ageing resistance and flame retardancy are prepared by introducing a molecularly engineered fluorinated thermoplastic polyurethane (FTPU) and synergistic flame retardant. The results show that the presence of FTPU greatly enhances the hydrophobicity of the matrix, impeding the diffusion of the water molecules into the composite, and alleviating the decrease of glass transition temperature and the rise of loss factor resulted from water plasticization effect. As a result, the TPU/FTPU composite shows a much higher mechanical property retention rate after immersing in water of 80 °C for 7 days, as compared to the pristine TPU. In addition, FTPU also exhibits synergistic effect with aluminum diethylphosphinate (ADP) and melamine cyanurate (MCA). The composite containing FTPU, ADP, and MCA (8 %, 4.5 %, and 4.5 %, respectively) can meet UL94 V-0 flame-retardant standard while the counterpart without FTPU shows UL94 V-2 flame retardancy. At the same time, such composite still exhibits tensile strength retention rate of 84.3 % after hygrothermal ageing treatment. This work provides a new modification strategy to simultaneously improve the hygrothermal ageing resistance and flame retardancy of TPU, which also can hopefully inspire the design of other polymers for high performance purpose.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"232 ","pages":"Article 111140"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New modification strategy for thermoplastic polyurethane with high hygrothermal ageing resistance and flame retardancy\",\"authors\":\"Lvxing Wang , Saifei Xiang , Guangpu Ling , Jianbo Ying , Jiahui Zhou , Jintao Yang\",\"doi\":\"10.1016/j.polymdegradstab.2024.111140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoplastic polyurethane (TPU) has been extensively used in many industrial communities, such as aerospace, electronics, and automotive manufacturing due to its remarkable mechanical strength, elasticity, and excellent chemical resistance. However, flammability and performance deterioration under high-temperature and high-humidity of TPU greatly limit its wider application. Herein, TPU composites with high hygrothermal ageing resistance and flame retardancy are prepared by introducing a molecularly engineered fluorinated thermoplastic polyurethane (FTPU) and synergistic flame retardant. The results show that the presence of FTPU greatly enhances the hydrophobicity of the matrix, impeding the diffusion of the water molecules into the composite, and alleviating the decrease of glass transition temperature and the rise of loss factor resulted from water plasticization effect. As a result, the TPU/FTPU composite shows a much higher mechanical property retention rate after immersing in water of 80 °C for 7 days, as compared to the pristine TPU. In addition, FTPU also exhibits synergistic effect with aluminum diethylphosphinate (ADP) and melamine cyanurate (MCA). The composite containing FTPU, ADP, and MCA (8 %, 4.5 %, and 4.5 %, respectively) can meet UL94 V-0 flame-retardant standard while the counterpart without FTPU shows UL94 V-2 flame retardancy. At the same time, such composite still exhibits tensile strength retention rate of 84.3 % after hygrothermal ageing treatment. This work provides a new modification strategy to simultaneously improve the hygrothermal ageing resistance and flame retardancy of TPU, which also can hopefully inspire the design of other polymers for high performance purpose.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"232 \",\"pages\":\"Article 111140\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014139102400483X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014139102400483X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
New modification strategy for thermoplastic polyurethane with high hygrothermal ageing resistance and flame retardancy
Thermoplastic polyurethane (TPU) has been extensively used in many industrial communities, such as aerospace, electronics, and automotive manufacturing due to its remarkable mechanical strength, elasticity, and excellent chemical resistance. However, flammability and performance deterioration under high-temperature and high-humidity of TPU greatly limit its wider application. Herein, TPU composites with high hygrothermal ageing resistance and flame retardancy are prepared by introducing a molecularly engineered fluorinated thermoplastic polyurethane (FTPU) and synergistic flame retardant. The results show that the presence of FTPU greatly enhances the hydrophobicity of the matrix, impeding the diffusion of the water molecules into the composite, and alleviating the decrease of glass transition temperature and the rise of loss factor resulted from water plasticization effect. As a result, the TPU/FTPU composite shows a much higher mechanical property retention rate after immersing in water of 80 °C for 7 days, as compared to the pristine TPU. In addition, FTPU also exhibits synergistic effect with aluminum diethylphosphinate (ADP) and melamine cyanurate (MCA). The composite containing FTPU, ADP, and MCA (8 %, 4.5 %, and 4.5 %, respectively) can meet UL94 V-0 flame-retardant standard while the counterpart without FTPU shows UL94 V-2 flame retardancy. At the same time, such composite still exhibits tensile strength retention rate of 84.3 % after hygrothermal ageing treatment. This work provides a new modification strategy to simultaneously improve the hygrothermal ageing resistance and flame retardancy of TPU, which also can hopefully inspire the design of other polymers for high performance purpose.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.