功能化环氧树脂可增强界面性能和耐腐蚀性:定制表面和界面特性及性能

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-01-01 DOI:10.1016/j.apsadv.2024.100685
Chandrabhan Verma , Kyong Yop Rhee , Akram Alfantazi
{"title":"功能化环氧树脂可增强界面性能和耐腐蚀性:定制表面和界面特性及性能","authors":"Chandrabhan Verma ,&nbsp;Kyong Yop Rhee ,&nbsp;Akram Alfantazi","doi":"10.1016/j.apsadv.2024.100685","DOIUrl":null,"url":null,"abstract":"<div><div>The use of functionalized epoxy resins (FERs) to improve corrosion resistance in various industrial applications has grown. Covalent and noncovalent modifications are the two main techniques for functionalizing epoxy resins. The addition of hydroxyl (‒OH), amino (‒NH<sub>2</sub>), or carboxyl (‒COOH) groups through covalent functionalization to the ERs enhances their reactivity, adhesion, and solubility of epoxy resins. Noncovalent functionalization entails adding nanomaterials such as metals, metal oxides, and carbon allotropes to the resin matrix. Functionalized ERs are more effective anti-corrosive materials in the aqueous phase and the coating. Growing solubility and more polar functional groups are responsible for FERs' improved potential to guard against corrosion in the aqueous phase. Mechanical strength, chemical and thermal stability, and corrosion resistance are traits that these alterations improve. Significant improvements in corrosion resistance have been demonstrated when epoxy resin coatings with inorganic (TiO<sub>2</sub>, CeO<sub>2</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, h-BN, lanthanides, etc.) and organic (G, GO, CNTs, PANI, MXenes, MOFs, PDA, BIM, LDH, polymers, etc.) additives are used. The curing agents greatly influence the efficiency of the functionalized epoxy resins. The curing environment and agent type directly affect the resin's mechanical, thermal, and chemical properties. The adhesion qualities of epoxy resins can be significantly improved by functionalized curing agents, such as those treated with silane. The present article describes the corrosion protection behavior of FERs in aqueous and coating phases and their current challenges and opportunities.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"25 ","pages":"Article 100685"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized epoxy resins for enhanced interface properties and corrosion resistance: Tailoring of surface and interface properties and performance\",\"authors\":\"Chandrabhan Verma ,&nbsp;Kyong Yop Rhee ,&nbsp;Akram Alfantazi\",\"doi\":\"10.1016/j.apsadv.2024.100685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of functionalized epoxy resins (FERs) to improve corrosion resistance in various industrial applications has grown. Covalent and noncovalent modifications are the two main techniques for functionalizing epoxy resins. The addition of hydroxyl (‒OH), amino (‒NH<sub>2</sub>), or carboxyl (‒COOH) groups through covalent functionalization to the ERs enhances their reactivity, adhesion, and solubility of epoxy resins. Noncovalent functionalization entails adding nanomaterials such as metals, metal oxides, and carbon allotropes to the resin matrix. Functionalized ERs are more effective anti-corrosive materials in the aqueous phase and the coating. Growing solubility and more polar functional groups are responsible for FERs' improved potential to guard against corrosion in the aqueous phase. Mechanical strength, chemical and thermal stability, and corrosion resistance are traits that these alterations improve. Significant improvements in corrosion resistance have been demonstrated when epoxy resin coatings with inorganic (TiO<sub>2</sub>, CeO<sub>2</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, h-BN, lanthanides, etc.) and organic (G, GO, CNTs, PANI, MXenes, MOFs, PDA, BIM, LDH, polymers, etc.) additives are used. The curing agents greatly influence the efficiency of the functionalized epoxy resins. The curing environment and agent type directly affect the resin's mechanical, thermal, and chemical properties. The adhesion qualities of epoxy resins can be significantly improved by functionalized curing agents, such as those treated with silane. The present article describes the corrosion protection behavior of FERs in aqueous and coating phases and their current challenges and opportunities.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"25 \",\"pages\":\"Article 100685\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924001132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924001132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在各种工业应用中,越来越多地使用功能化环氧树脂(FER)来提高耐腐蚀性。共价和非共价改性是环氧树脂功能化的两种主要技术。通过共价官能化在环氧树脂中添加羟基(-OH)、氨基(-NH2)或羧基(-COOH),可增强环氧树脂的反应性、粘附性和溶解性。非共价官能化需要在树脂基体中添加纳米材料,如金属、金属氧化物和碳异构体。功能化 ER 在水相和涂层中是更有效的防腐蚀材料。溶解度的增加和更多的极性官能团是 FER 在水相中提高防腐蚀潜力的原因。机械强度、化学和热稳定性以及耐腐蚀性是这些变化所能改善的特性。在环氧树脂涂层中使用无机(TiO2、CeO2、SiO2、Al2O3、h-BN、镧系元素等)和有机(G、GO、CNT、PANI、MXenes、MOFs、PDA、BIM、LDH、聚合物等)添加剂后,耐腐蚀性能显著提高。固化剂在很大程度上影响着功能化环氧树脂的效率。固化环境和固化剂类型会直接影响树脂的机械、热和化学特性。功能化固化剂(如硅烷处理过的固化剂)可显著改善环氧树脂的粘合质量。本文介绍了 FER 在水相和涂层相中的防腐蚀性能及其当前面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functionalized epoxy resins for enhanced interface properties and corrosion resistance: Tailoring of surface and interface properties and performance
The use of functionalized epoxy resins (FERs) to improve corrosion resistance in various industrial applications has grown. Covalent and noncovalent modifications are the two main techniques for functionalizing epoxy resins. The addition of hydroxyl (‒OH), amino (‒NH2), or carboxyl (‒COOH) groups through covalent functionalization to the ERs enhances their reactivity, adhesion, and solubility of epoxy resins. Noncovalent functionalization entails adding nanomaterials such as metals, metal oxides, and carbon allotropes to the resin matrix. Functionalized ERs are more effective anti-corrosive materials in the aqueous phase and the coating. Growing solubility and more polar functional groups are responsible for FERs' improved potential to guard against corrosion in the aqueous phase. Mechanical strength, chemical and thermal stability, and corrosion resistance are traits that these alterations improve. Significant improvements in corrosion resistance have been demonstrated when epoxy resin coatings with inorganic (TiO2, CeO2, SiO2, Al2O3, h-BN, lanthanides, etc.) and organic (G, GO, CNTs, PANI, MXenes, MOFs, PDA, BIM, LDH, polymers, etc.) additives are used. The curing agents greatly influence the efficiency of the functionalized epoxy resins. The curing environment and agent type directly affect the resin's mechanical, thermal, and chemical properties. The adhesion qualities of epoxy resins can be significantly improved by functionalized curing agents, such as those treated with silane. The present article describes the corrosion protection behavior of FERs in aqueous and coating phases and their current challenges and opportunities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Structural features of graphene and silver functionalized graphene oxide loaded with perfluorinated compounds during thermal heating Localized creation of bubble domains in Fe3GaTe2 by conductive atomic force microscopy Influence of pretreatments on the surface charge of anode and cathode materials in spent lithium-ion batteries - a key point for recycling Prussian blue nanocubes growth by electrochemical deposition on sulfur-doped graphene as nanozyme: Optimization and application in the field of environmental sensors Morphology-dependent near-infrared photothermal activity of plasmonic TiN nanobars and nanospheres for anticancer, antibacterial therapy and deep in vivo photoacoustic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1