基于 T-Product 的动态系统的数据驱动分析

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2025-01-21 DOI:10.1109/LCSYS.2025.3532470
Xin Mao;Anqi Dong;Ziqin He;Yidan Mei;Shenghan Mei;Ren Wang;Can Chen
{"title":"基于 T-Product 的动态系统的数据驱动分析","authors":"Xin Mao;Anqi Dong;Ziqin He;Yidan Mei;Shenghan Mei;Ren Wang;Can Chen","doi":"10.1109/LCSYS.2025.3532470","DOIUrl":null,"url":null,"abstract":"A wide variety of data can be represented using third-order tensors. Applications of these tensors include chemometrics, psychometrics, and image/video processing. However, traditional data-driven frameworks are not naturally equipped to process tensors without first unfolding or flattening the data, which can result in a loss of crucial higher-order structural information. In this letter, we introduce a novel framework for data-driven analysis of T-product-based dynamical systems (TPDSs), where the system evolution is governed by the T-product between a third-order dynamic tensor and a third-order state tensor. In particular, we examine the data informativity of TPDSs concerning system identification, stability, controllability, and stabilizability and illustrate significant computational improvements over unfolding-based approaches by leveraging the unique properties of the T-product. The effectiveness of our framework is demonstrated through both synthetic and real-world examples.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3356-3361"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Analysis of T-Product-Based Dynamical Systems\",\"authors\":\"Xin Mao;Anqi Dong;Ziqin He;Yidan Mei;Shenghan Mei;Ren Wang;Can Chen\",\"doi\":\"10.1109/LCSYS.2025.3532470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide variety of data can be represented using third-order tensors. Applications of these tensors include chemometrics, psychometrics, and image/video processing. However, traditional data-driven frameworks are not naturally equipped to process tensors without first unfolding or flattening the data, which can result in a loss of crucial higher-order structural information. In this letter, we introduce a novel framework for data-driven analysis of T-product-based dynamical systems (TPDSs), where the system evolution is governed by the T-product between a third-order dynamic tensor and a third-order state tensor. In particular, we examine the data informativity of TPDSs concerning system identification, stability, controllability, and stabilizability and illustrate significant computational improvements over unfolding-based approaches by leveraging the unique properties of the T-product. The effectiveness of our framework is demonstrated through both synthetic and real-world examples.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3356-3361\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848219/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10848219/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

使用三阶张量可以表示各种各样的数据。这些张量的应用包括化学计量学、心理计量学和图像/视频处理。然而,传统的数据驱动框架不具备处理张量的自然条件,无法在不首先展开或扁平化数据的情况下处理张量,这可能会导致关键的高阶结构信息丢失。在这封信中,我们介绍了一种基于 T-Product 的动态系统(TPDSs)数据驱动分析新框架,其中系统演化受三阶动态张量和三阶状态张量之间的 T-Product 控制。特别是,我们研究了 TPDSs 在系统识别、稳定性、可控性和可稳定性方面的数据信息性,并利用 T-乘积的独特属性,说明了与基于展开的方法相比,TPDSs 在计算方面的显著改进。我们的框架通过合成和真实世界的例子证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Analysis of T-Product-Based Dynamical Systems
A wide variety of data can be represented using third-order tensors. Applications of these tensors include chemometrics, psychometrics, and image/video processing. However, traditional data-driven frameworks are not naturally equipped to process tensors without first unfolding or flattening the data, which can result in a loss of crucial higher-order structural information. In this letter, we introduce a novel framework for data-driven analysis of T-product-based dynamical systems (TPDSs), where the system evolution is governed by the T-product between a third-order dynamic tensor and a third-order state tensor. In particular, we examine the data informativity of TPDSs concerning system identification, stability, controllability, and stabilizability and illustrate significant computational improvements over unfolding-based approaches by leveraging the unique properties of the T-product. The effectiveness of our framework is demonstrated through both synthetic and real-world examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Decentralized Fault Diagnosis for Constant-Time Automata Data-Driven Disturbance Decoupling Problem Strategy Diffusion and Conformity in Evolutionary Dynamics on General Networks Asynchronous Event-Triggered H∞ Control for Continuous-Time Markov Jump Systems Disturbance Observer-Parameterized Control Barrier Function With Adaptive Safety Bounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1