PPARβ/δ 激活通过靶向 UBR5/ATM 信号改善皮质酮诱导的星形胶质细胞氧化应激损伤

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Neurochemistry Pub Date : 2025-02-08 DOI:10.1111/jnc.70013
Juan Ji, Ye-Fan Chen, Chen Hong, Xue-Wei Ren, Hang Xu, Zhen-Yu Cai, Yin-Feng Dong, Xiu-Lan Sun
{"title":"PPARβ/δ 激活通过靶向 UBR5/ATM 信号改善皮质酮诱导的星形胶质细胞氧化应激损伤","authors":"Juan Ji,&nbsp;Ye-Fan Chen,&nbsp;Chen Hong,&nbsp;Xue-Wei Ren,&nbsp;Hang Xu,&nbsp;Zhen-Yu Cai,&nbsp;Yin-Feng Dong,&nbsp;Xiu-Lan Sun","doi":"10.1111/jnc.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oxidative stress-mediated astrocytic damage contributes to nerve injury and the development of depression, especially under stress conditions. Peroxisomes and pexophagy are essential for balancing oxidative stress and protein degradation products. Our previous findings suggest that peroxisome proliferators-activated receptor β/δ (PPARβ/δ) activation significantly alleviates depressive behaviors by preventing astrocytic injury. However, the underlying mechanisms remain unclear. In the present study, we established oxidative injury by treating astrocytes with corticosterone. Subsequently, PPARβ/δ agonists and antagonists were applied to determine the effects of PPARβ/δ on balancing peroxisomes and pexophagy in astrocytes. The PPARβ/δ agonist (GW0742) significantly improved cell viability and decreased intracellular reactive oxygen species (ROS) production induced by corticosterone, while pretreatment with the PPARβ/δ, antagonist GSK3787 reversed the effects of GW0742. Moreover, activating PPARβ/δ promoted peroxisomal biogenesis factor 5 (PEX5)-mediated pexophagy by enhancing the phosphorylation of ataxia-telangiectasia mutated (ATM) kinase. Conversely, blocking PPARβ/δ with GSK3787 partially abolished the effects of GW0742. Further investigations demonstrated that activation of PPARβ/δ not only induced transcription of the ubiquitin protein ligase E3 component n-recognin 5 (UBR5) but also enhanced the interaction between PPARβ/δ and UBR5, contributing to ATM interactor (ATMIN) degradation, and increased phosphorylated ATM kinase levels. Therefore, this study revealed that activating PPARβ/δ improves corticosterone-induced oxidative damage in astrocytes by enhancing pexophagy. PPARβ/δ directly interacts with UBR5 to facilitate ATMIN degradation and promotes ATM phosphorylation, thereby maintaining the balance between peroxisomes and pexophagy. These findings suggest that PPARβ/δ is a potential target for promoting pexophagy in astrocytes upon stress.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPARβ/δ Activation Improves Corticosterone-Induced Oxidative Stress Damage in Astrocytes by Targeting UBR5/ATM Signaling\",\"authors\":\"Juan Ji,&nbsp;Ye-Fan Chen,&nbsp;Chen Hong,&nbsp;Xue-Wei Ren,&nbsp;Hang Xu,&nbsp;Zhen-Yu Cai,&nbsp;Yin-Feng Dong,&nbsp;Xiu-Lan Sun\",\"doi\":\"10.1111/jnc.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Oxidative stress-mediated astrocytic damage contributes to nerve injury and the development of depression, especially under stress conditions. Peroxisomes and pexophagy are essential for balancing oxidative stress and protein degradation products. Our previous findings suggest that peroxisome proliferators-activated receptor β/δ (PPARβ/δ) activation significantly alleviates depressive behaviors by preventing astrocytic injury. However, the underlying mechanisms remain unclear. In the present study, we established oxidative injury by treating astrocytes with corticosterone. Subsequently, PPARβ/δ agonists and antagonists were applied to determine the effects of PPARβ/δ on balancing peroxisomes and pexophagy in astrocytes. The PPARβ/δ agonist (GW0742) significantly improved cell viability and decreased intracellular reactive oxygen species (ROS) production induced by corticosterone, while pretreatment with the PPARβ/δ, antagonist GSK3787 reversed the effects of GW0742. Moreover, activating PPARβ/δ promoted peroxisomal biogenesis factor 5 (PEX5)-mediated pexophagy by enhancing the phosphorylation of ataxia-telangiectasia mutated (ATM) kinase. Conversely, blocking PPARβ/δ with GSK3787 partially abolished the effects of GW0742. Further investigations demonstrated that activation of PPARβ/δ not only induced transcription of the ubiquitin protein ligase E3 component n-recognin 5 (UBR5) but also enhanced the interaction between PPARβ/δ and UBR5, contributing to ATM interactor (ATMIN) degradation, and increased phosphorylated ATM kinase levels. Therefore, this study revealed that activating PPARβ/δ improves corticosterone-induced oxidative damage in astrocytes by enhancing pexophagy. PPARβ/δ directly interacts with UBR5 to facilitate ATMIN degradation and promotes ATM phosphorylation, thereby maintaining the balance between peroxisomes and pexophagy. These findings suggest that PPARβ/δ is a potential target for promoting pexophagy in astrocytes upon stress.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\\n </div>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 2\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70013\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPARβ/δ Activation Improves Corticosterone-Induced Oxidative Stress Damage in Astrocytes by Targeting UBR5/ATM Signaling

Oxidative stress-mediated astrocytic damage contributes to nerve injury and the development of depression, especially under stress conditions. Peroxisomes and pexophagy are essential for balancing oxidative stress and protein degradation products. Our previous findings suggest that peroxisome proliferators-activated receptor β/δ (PPARβ/δ) activation significantly alleviates depressive behaviors by preventing astrocytic injury. However, the underlying mechanisms remain unclear. In the present study, we established oxidative injury by treating astrocytes with corticosterone. Subsequently, PPARβ/δ agonists and antagonists were applied to determine the effects of PPARβ/δ on balancing peroxisomes and pexophagy in astrocytes. The PPARβ/δ agonist (GW0742) significantly improved cell viability and decreased intracellular reactive oxygen species (ROS) production induced by corticosterone, while pretreatment with the PPARβ/δ, antagonist GSK3787 reversed the effects of GW0742. Moreover, activating PPARβ/δ promoted peroxisomal biogenesis factor 5 (PEX5)-mediated pexophagy by enhancing the phosphorylation of ataxia-telangiectasia mutated (ATM) kinase. Conversely, blocking PPARβ/δ with GSK3787 partially abolished the effects of GW0742. Further investigations demonstrated that activation of PPARβ/δ not only induced transcription of the ubiquitin protein ligase E3 component n-recognin 5 (UBR5) but also enhanced the interaction between PPARβ/δ and UBR5, contributing to ATM interactor (ATMIN) degradation, and increased phosphorylated ATM kinase levels. Therefore, this study revealed that activating PPARβ/δ improves corticosterone-induced oxidative damage in astrocytes by enhancing pexophagy. PPARβ/δ directly interacts with UBR5 to facilitate ATMIN degradation and promotes ATM phosphorylation, thereby maintaining the balance between peroxisomes and pexophagy. These findings suggest that PPARβ/δ is a potential target for promoting pexophagy in astrocytes upon stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
期刊最新文献
Preface to the Special Issue “Matrix Metalloproteinases in Health and Disease” Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research CPNE7 Regulates Amyloidogenesis Through CAP1-Dependent ADAM10 Translation Issue Information Microglia-Mediated Synaptic Dysfunction Contributes to Chemotherapy-Related Cognitive Impairment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1