Liang Gou, Dongming Bian, Yulei Nie, Gengxin Zhang, Hongwei Zhou, Yulin Shi, Lei Zhang
{"title":"Hierarchical Resource Management for Mega-LEO Satellite Constellation.","authors":"Liang Gou, Dongming Bian, Yulei Nie, Gengxin Zhang, Hongwei Zhou, Yulin Shi, Lei Zhang","doi":"10.3390/s25030902","DOIUrl":null,"url":null,"abstract":"<p><p>The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global spectrum resources, significantly impacts resource allocation and scheduling. This paper addresses the challenge of effectively allocating system resources based on service and resource distribution, particularly in hotspot areas where user demand is concentrated, to enhance resource utilization efficiency. We propose a novel three-layer management architecture designed to implement scheduling strategies and alleviate the processing burden on the terrestrial Network Control Center (NCC), while providing real-time scheduling capabilities to adapt to rapid changes in network topology, resource distribution, and service requirements. The three layers of the resource management architecture-NCC, space base station (SBS), and user terminal (UT)-are discussed in detail, along with the functions and responsibilities of each layer. Additionally, we explore various resource scheduling strategies, approaches, and algorithms, including spectrum cognition, interference coordination, beam scheduling, multi-satellite collaboration, and random access. Simulations demonstrate the effectiveness of the proposed approaches and algorithms, indicating significant improvements in resource management in the MLSCS.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030902","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hierarchical Resource Management for Mega-LEO Satellite Constellation.
The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global spectrum resources, significantly impacts resource allocation and scheduling. This paper addresses the challenge of effectively allocating system resources based on service and resource distribution, particularly in hotspot areas where user demand is concentrated, to enhance resource utilization efficiency. We propose a novel three-layer management architecture designed to implement scheduling strategies and alleviate the processing burden on the terrestrial Network Control Center (NCC), while providing real-time scheduling capabilities to adapt to rapid changes in network topology, resource distribution, and service requirements. The three layers of the resource management architecture-NCC, space base station (SBS), and user terminal (UT)-are discussed in detail, along with the functions and responsibilities of each layer. Additionally, we explore various resource scheduling strategies, approaches, and algorithms, including spectrum cognition, interference coordination, beam scheduling, multi-satellite collaboration, and random access. Simulations demonstrate the effectiveness of the proposed approaches and algorithms, indicating significant improvements in resource management in the MLSCS.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.