{"title":"CO2 geological sequestration can remove emerging contaminants in groundwater: The important role of secondary mineral carbonates","authors":"Zhongjie Cui, Xuejie Zhang, Bingbing Hu, Liandong Zhu, Li-Zhi Huang","doi":"10.1016/j.watres.2025.123293","DOIUrl":null,"url":null,"abstract":"Carbon dioxide (CO<sub>2</sub>) injection has been proposed as a strategy for carbon sequestration, while uncertainties persist regarding its effects on groundwater. Concerns have been raised that CO<sub>2</sub> mineralization and sequestration could potentially lead to groundwater contamination. However, our study demonstrates its capability to mitigate pollution. The injection of CO<sub>2</sub> facilitates the rapid dissolution of minerals, releasing Ca(II), Mg(II), and Fe(II) and forming secondary carbonate minerals, such as CaCO<sub>3</sub>, MgCO<sub>3</sub>, and FeCO<sub>3</sub>. The in-situ generated FeCO<sub>3</sub> can activate oxygen to produce hydroxyl radicals (•OH) under oxic condition, thereby enhancing the degradation of emerging organic contaminants in groundwater, such as 2,4,6-tribromophenol, flurbiprofen, diclofenac, carbamazepine, phenol, and sulfamethoxazole. Mechanism studies suggest that this process is enhanced by the conversion of in-situ formed FeCO<sub>3</sub> into a two-dimensional goethite nanosheet structure, which provides a larger specific surface area and enables more Fe(II) to be adsorbed on the mineral surface. The formation of Fe-O coordination bonds effectively reduces the loss of •OH at the interfacial reaction layer. The study further distinguishes and quantifies the contributions of different Fe(II) forms to •OH generation. The transformation pathways of the six contaminants and the toxicity of their intermediates are also analyzed. CaCO<sub>3</sub> and MgCO<sub>3</sub> do not exhibit the ability to degrade pollutants, but play a role in carbon mineralization. This work reveals that secondary minerals generated through the CO<sub>2</sub> mineralization and sequestration process display simultaneous capabilities of contaminant degradation and carbon fixation. Such activities are pivotal not only for the environmental fate and transformation of emerging contaminants in groundwater but also for regulating the carbon cycle.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"10 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123293","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
CO2 geological sequestration can remove emerging contaminants in groundwater: The important role of secondary mineral carbonates
Carbon dioxide (CO2) injection has been proposed as a strategy for carbon sequestration, while uncertainties persist regarding its effects on groundwater. Concerns have been raised that CO2 mineralization and sequestration could potentially lead to groundwater contamination. However, our study demonstrates its capability to mitigate pollution. The injection of CO2 facilitates the rapid dissolution of minerals, releasing Ca(II), Mg(II), and Fe(II) and forming secondary carbonate minerals, such as CaCO3, MgCO3, and FeCO3. The in-situ generated FeCO3 can activate oxygen to produce hydroxyl radicals (•OH) under oxic condition, thereby enhancing the degradation of emerging organic contaminants in groundwater, such as 2,4,6-tribromophenol, flurbiprofen, diclofenac, carbamazepine, phenol, and sulfamethoxazole. Mechanism studies suggest that this process is enhanced by the conversion of in-situ formed FeCO3 into a two-dimensional goethite nanosheet structure, which provides a larger specific surface area and enables more Fe(II) to be adsorbed on the mineral surface. The formation of Fe-O coordination bonds effectively reduces the loss of •OH at the interfacial reaction layer. The study further distinguishes and quantifies the contributions of different Fe(II) forms to •OH generation. The transformation pathways of the six contaminants and the toxicity of their intermediates are also analyzed. CaCO3 and MgCO3 do not exhibit the ability to degrade pollutants, but play a role in carbon mineralization. This work reveals that secondary minerals generated through the CO2 mineralization and sequestration process display simultaneous capabilities of contaminant degradation and carbon fixation. Such activities are pivotal not only for the environmental fate and transformation of emerging contaminants in groundwater but also for regulating the carbon cycle.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.