IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical review letters Pub Date : 2025-02-14 DOI:10.1103/physrevlett.134.068403
Giacomo Barzon, Daniel Maria Busiello, Giorgio Nicoletti
{"title":"Excitation-Inhibition Balance Controls Information Encoding in Neural Populations","authors":"Giacomo Barzon, Daniel Maria Busiello, Giorgio Nicoletti","doi":"10.1103/physrevlett.134.068403","DOIUrl":null,"url":null,"abstract":"Understanding how the complex connectivity structure of the brain shapes its information-processing capabilities is a long-standing question. By focusing on a paradigmatic architecture, we study how the neural activity of excitatory and inhibitory populations encodes information on external signals. We show that at long times information is maximized at the edge of stability, where inhibition balances excitation, both in linear and nonlinear regimes. In the presence of multiple external signals, this maximum corresponds to the entropy of the input dynamics. By analyzing the case of a prolonged stimulus, we find that stronger inhibition is instead needed to maximize the instantaneous sensitivity, revealing an intrinsic tradeoff between short-time responses and long-time accuracy. In agreement with recent experimental findings, our results pave the way for a deeper information-theoretic understanding of how the balance between excitation and inhibition controls optimal information-processing in neural populations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.068403","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解大脑复杂的连接结构如何塑造其信息处理能力是一个长期存在的问题。通过聚焦于一个范例结构,我们研究了兴奋性和抑制性群体的神经活动如何编码外部信号的信息。我们的研究表明,无论是在线性还是非线性状态下,在抑制与兴奋相平衡的稳定边缘,信息都能长时间地达到最大化。在存在多个外部信号的情况下,这一最大值与输入动态的熵相对应。通过分析长时间刺激的情况,我们发现需要更强的抑制作用才能最大化瞬时灵敏度,这揭示了短时间反应和长时间准确性之间的内在权衡。我们的研究结果与最近的实验结果一致,为从信息论角度深入理解神经群中兴奋与抑制之间的平衡如何控制最佳信息处理铺平了道路。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excitation-Inhibition Balance Controls Information Encoding in Neural Populations
Understanding how the complex connectivity structure of the brain shapes its information-processing capabilities is a long-standing question. By focusing on a paradigmatic architecture, we study how the neural activity of excitatory and inhibitory populations encodes information on external signals. We show that at long times information is maximized at the edge of stability, where inhibition balances excitation, both in linear and nonlinear regimes. In the presence of multiple external signals, this maximum corresponds to the entropy of the input dynamics. By analyzing the case of a prolonged stimulus, we find that stronger inhibition is instead needed to maximize the instantaneous sensitivity, revealing an intrinsic tradeoff between short-time responses and long-time accuracy. In agreement with recent experimental findings, our results pave the way for a deeper information-theoretic understanding of how the balance between excitation and inhibition controls optimal information-processing in neural populations. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
期刊最新文献
Ultrahigh-Energy Particle Collisions and Heavy Dark Matter at Phase Transitions Excitation-Inhibition Balance Controls Information Encoding in Neural Populations Nonequilibrium Transitions in a Template Copying Ensemble Observation of the Two-Photon Landau-Zener-Stückelberg-Majorana Effect Fully Programmable Spatial Photonic Ising Machine by Focal Plane Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1