Richard von Eckardstein, Kai Schmitz, Oleksandr Sobol
{"title":"On the Schwinger effect during axion inflation","authors":"Richard von Eckardstein, Kai Schmitz, Oleksandr Sobol","doi":"10.1007/JHEP02(2025)096","DOIUrl":null,"url":null,"abstract":"<p>Pair-creation of charged particles in a strong gauge-field background — the renowned Schwinger effect — can strongly alter the efficiency of gauge-field production during axion inflation. It is therefore crucial to have a clear understanding and proper description of this phenomenon to obtain reliable predictions for the physical observables in this model. In the present work, we revisit the problem of Schwinger pair production during axion inflation in the presence of both electric and magnetic fields and improve on the state of the art in two ways: (i) taking into account that the electric- and magnetic-field three-vectors are in general not collinear, we derive the vector decomposition of the Schwinger-induced current in terms of these fields and determine the corresponding effective electric and magnetic conductivities; (ii) by identifying the physical momentum scale associated with the pair-creation process, we incorporate Schwinger damping of the gauge field in a scale-dependent fashion in the relevant equations of motion. Implementing this new description in the framework of the gradient-expansion formalism, we obtain numerical results in a benchmark scenario of axion inflation and perform a comprehensive comparison with earlier results in the literature. In some cases, the resulting energy densities of the produced gauge fields differ from the old results by more than one order of magnitude, which reflects the importance of taking the new effects into account.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)096.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)096","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Pair-creation of charged particles in a strong gauge-field background — the renowned Schwinger effect — can strongly alter the efficiency of gauge-field production during axion inflation. It is therefore crucial to have a clear understanding and proper description of this phenomenon to obtain reliable predictions for the physical observables in this model. In the present work, we revisit the problem of Schwinger pair production during axion inflation in the presence of both electric and magnetic fields and improve on the state of the art in two ways: (i) taking into account that the electric- and magnetic-field three-vectors are in general not collinear, we derive the vector decomposition of the Schwinger-induced current in terms of these fields and determine the corresponding effective electric and magnetic conductivities; (ii) by identifying the physical momentum scale associated with the pair-creation process, we incorporate Schwinger damping of the gauge field in a scale-dependent fashion in the relevant equations of motion. Implementing this new description in the framework of the gradient-expansion formalism, we obtain numerical results in a benchmark scenario of axion inflation and perform a comprehensive comparison with earlier results in the literature. In some cases, the resulting energy densities of the produced gauge fields differ from the old results by more than one order of magnitude, which reflects the importance of taking the new effects into account.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).