Jialing Luo, Suling Wei, Yufeng Xie, Junlang Qiu, Xiaolin Niu, Na Luo, Yanpeng Gao, Yuemeng Ji, Taicheng An
{"title":"Unveiling Novel Chloramination Byproducts of Parabens: Electrophilic Coupling Mechanisms and their Elevated Health Risks","authors":"Jialing Luo, Suling Wei, Yufeng Xie, Junlang Qiu, Xiaolin Niu, Na Luo, Yanpeng Gao, Yuemeng Ji, Taicheng An","doi":"10.1016/j.envpol.2025.125885","DOIUrl":null,"url":null,"abstract":"The widespread use of chloramination as a disinfection strategy has raised concerns about the formation of harmful disinfection byproducts (DBPs), highlighting the urgent need to elucidate the underlying transformation mechanisms. In this study, we integrated non-targeted screening, organic synthesis, and quantum chemical calculations to investigate the chloramination mechanism of preservative methylparaben and assess the toxicological impacts of the resulting DBPs. In addition to chlorinated products, two novel transformation products, the coupled (C-MeP) and hydroxylated (OH-MeP) products were identified, and the structure of C-MeP was confirmed through synthesized standards. Quantum chemical calculations reveal that the formation of C-MeP is driven by electron transfer, generating radicals that promote C-C bond coupling, while OH-MeP is likely formed by an addition-hydrolysis pathway. The formation of chlorinated products occurs through electrophilic substitution, facilitated by water molecules, and may undergo coupling to form chlorinated products with a biphenyl structure. Toxicity assessments indicate that coupled products exhibit greater negative effects on the gastrointestinal and cardiovascular system compared to parent pollutant. These findings highlight the need to expand the focus of chloramination disinfection beyond traditional chlorinated DBPs, emphasizing the ecological and health implications of novel products including coupled byproducts.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"7 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125885","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unveiling Novel Chloramination Byproducts of Parabens: Electrophilic Coupling Mechanisms and their Elevated Health Risks
The widespread use of chloramination as a disinfection strategy has raised concerns about the formation of harmful disinfection byproducts (DBPs), highlighting the urgent need to elucidate the underlying transformation mechanisms. In this study, we integrated non-targeted screening, organic synthesis, and quantum chemical calculations to investigate the chloramination mechanism of preservative methylparaben and assess the toxicological impacts of the resulting DBPs. In addition to chlorinated products, two novel transformation products, the coupled (C-MeP) and hydroxylated (OH-MeP) products were identified, and the structure of C-MeP was confirmed through synthesized standards. Quantum chemical calculations reveal that the formation of C-MeP is driven by electron transfer, generating radicals that promote C-C bond coupling, while OH-MeP is likely formed by an addition-hydrolysis pathway. The formation of chlorinated products occurs through electrophilic substitution, facilitated by water molecules, and may undergo coupling to form chlorinated products with a biphenyl structure. Toxicity assessments indicate that coupled products exhibit greater negative effects on the gastrointestinal and cardiovascular system compared to parent pollutant. These findings highlight the need to expand the focus of chloramination disinfection beyond traditional chlorinated DBPs, emphasizing the ecological and health implications of novel products including coupled byproducts.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.