通过双重约束设计获得用于燃料电池的高稳定性金属间纳米粒子

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-17 DOI:10.1002/adma.202417095
Lin Tian, Xiaoping Gao, Mengzhao Zhu, Zixiang Huang, Bei Wu, Cai Chen, Xianhui Ma, Yaner Ruan, Wenxin Guo, Xiangmin Meng, Huijuan Wang, Wubin Du, Shengnan He, Hongge Pan, Xusheng Zheng, Zhijun Wu, Huang Zhou, Jing Xia, Yuen Wu
{"title":"通过双重约束设计获得用于燃料电池的高稳定性金属间纳米粒子","authors":"Lin Tian, Xiaoping Gao, Mengzhao Zhu, Zixiang Huang, Bei Wu, Cai Chen, Xianhui Ma, Yaner Ruan, Wenxin Guo, Xiangmin Meng, Huijuan Wang, Wubin Du, Shengnan He, Hongge Pan, Xusheng Zheng, Zhijun Wu, Huang Zhou, Jing Xia, Yuen Wu","doi":"10.1002/adma.202417095","DOIUrl":null,"url":null,"abstract":"Maintaining the stability of low Pt catalysts during prolonged operation of proton exchange membrane fuel cells (PEMFCs) remains a substantial challenge. Here, a double confinement design is presented to significantly improve the stability of intermetallic nanoparticles while maintaining their high catalytic activity toward PEMFCs. First, a carbon shell is coated on the surface of nanoparticles to form carbon confinement. Second, O<sub>2</sub> is introduced during the annealing process to selectively etch the carbon shell to expose the active surface, and to induce the segregation of surface transition metals to form Pt-skin confinement. Overall, the intermetallic nanoparticles are protected by carbon confinement and Pt-skin confinement to withstand the harsh environment of PEMFCs. Typically, the double confined Pt<sub>1</sub>Co<sub>1</sub> catalyst exhibits an exceptional mass activity of 1.45 A mg<sub>Pt</sub><sup>−1</sup> at 0.9 V in PEMFCs tests, with only a 17.3% decay after 30 000 cycles and no observed structure changes, outperforming most reported PtCo catalysts and DOE 2025 targets. Furthermore, the carbon confinement proportion can be controlled by varying the thickness of the coated carbon shell, and this strategy is also applicable to the synthesis of double-confined Pt<sub>1</sub>Fe<sub>1</sub> and Pt<sub>1</sub>Cu<sub>1</sub> intermetallic nanoparticles.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"129 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Confinement Design to Access Highly Stable Intermetallic Nanoparticles for Fuel Cells\",\"authors\":\"Lin Tian, Xiaoping Gao, Mengzhao Zhu, Zixiang Huang, Bei Wu, Cai Chen, Xianhui Ma, Yaner Ruan, Wenxin Guo, Xiangmin Meng, Huijuan Wang, Wubin Du, Shengnan He, Hongge Pan, Xusheng Zheng, Zhijun Wu, Huang Zhou, Jing Xia, Yuen Wu\",\"doi\":\"10.1002/adma.202417095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining the stability of low Pt catalysts during prolonged operation of proton exchange membrane fuel cells (PEMFCs) remains a substantial challenge. Here, a double confinement design is presented to significantly improve the stability of intermetallic nanoparticles while maintaining their high catalytic activity toward PEMFCs. First, a carbon shell is coated on the surface of nanoparticles to form carbon confinement. Second, O<sub>2</sub> is introduced during the annealing process to selectively etch the carbon shell to expose the active surface, and to induce the segregation of surface transition metals to form Pt-skin confinement. Overall, the intermetallic nanoparticles are protected by carbon confinement and Pt-skin confinement to withstand the harsh environment of PEMFCs. Typically, the double confined Pt<sub>1</sub>Co<sub>1</sub> catalyst exhibits an exceptional mass activity of 1.45 A mg<sub>Pt</sub><sup>−1</sup> at 0.9 V in PEMFCs tests, with only a 17.3% decay after 30 000 cycles and no observed structure changes, outperforming most reported PtCo catalysts and DOE 2025 targets. Furthermore, the carbon confinement proportion can be controlled by varying the thickness of the coated carbon shell, and this strategy is also applicable to the synthesis of double-confined Pt<sub>1</sub>Fe<sub>1</sub> and Pt<sub>1</sub>Cu<sub>1</sub> intermetallic nanoparticles.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202417095\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在质子交换膜燃料电池(PEMFC)的长期运行过程中,如何保持低铂催化剂的稳定性仍然是一个巨大的挑战。本文介绍了一种双重封闭设计,可显著提高金属间纳米粒子的稳定性,同时保持其对 PEMFC 的高催化活性。首先,在纳米粒子表面涂上一层碳壳,形成碳约束。其次,在退火过程中引入氧气,选择性地蚀刻碳壳,使活性表面暴露出来,并诱导表面过渡金属偏析,形成铂-铂-铂-铂-铂-铂-铂-铂-铂-铂-表层封闭。总之,金属间纳米粒子受到碳约束和铂-表层约束的保护,可以承受 PEMFCs 的恶劣环境。通常,在 PEMFCs 测试中,双封闭 Pt1Co1 催化剂在 0.9 V 时的质量活性为 1.45 A mgPt-1,循环 30,000 次后仅衰减 17.3%,且未观察到结构变化,优于大多数已报道的 PtCo 催化剂和 DOE 2025 目标。此外,还可以通过改变涂层碳壳的厚度来控制碳约束比例,这种策略也适用于合成双约束 Pt1Fe1 和 Pt1Cu1 金属间纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double Confinement Design to Access Highly Stable Intermetallic Nanoparticles for Fuel Cells
Maintaining the stability of low Pt catalysts during prolonged operation of proton exchange membrane fuel cells (PEMFCs) remains a substantial challenge. Here, a double confinement design is presented to significantly improve the stability of intermetallic nanoparticles while maintaining their high catalytic activity toward PEMFCs. First, a carbon shell is coated on the surface of nanoparticles to form carbon confinement. Second, O2 is introduced during the annealing process to selectively etch the carbon shell to expose the active surface, and to induce the segregation of surface transition metals to form Pt-skin confinement. Overall, the intermetallic nanoparticles are protected by carbon confinement and Pt-skin confinement to withstand the harsh environment of PEMFCs. Typically, the double confined Pt1Co1 catalyst exhibits an exceptional mass activity of 1.45 A mgPt−1 at 0.9 V in PEMFCs tests, with only a 17.3% decay after 30 000 cycles and no observed structure changes, outperforming most reported PtCo catalysts and DOE 2025 targets. Furthermore, the carbon confinement proportion can be controlled by varying the thickness of the coated carbon shell, and this strategy is also applicable to the synthesis of double-confined Pt1Fe1 and Pt1Cu1 intermetallic nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Issue Information Field-Programmable Topographic-Morphing Array for General-Purpose Lab-on-a-Chip Systems (Adv. Mater. 7/2025) Molecular Imaging of Ovarian Follicles and Tumors With Near-Infrared II Bioconjugates (Adv. Mater. 7/2025) Novel Selectivity: Target of Gas Sensing Defined by Behavior (Adv. Mater. 7/2025) Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices (Adv. Mater. 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1