悬浮和未悬浮纳米odiesel 液滴的蒸发和燃烧行为各不相同

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2025-02-18 DOI:10.1016/j.combustflame.2025.114060
Álvaro Muelas, Taha Poonawala, Javier Ballester
{"title":"悬浮和未悬浮纳米odiesel 液滴的蒸发和燃烧行为各不相同","authors":"Álvaro Muelas,&nbsp;Taha Poonawala,&nbsp;Javier Ballester","doi":"10.1016/j.combustflame.2025.114060","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the main evaporation and combustion characteristics of diesel droplets doped with different concentrations of alumina and ceria nanoparticles (NPs) for a range of conditions scarcely explored and relevant for combustion applications: high-temperature and reducing/oxidizing atmospheres (0/10 % O<sub>2</sub>). Due to the potential influence of the particular experimental conditions, all tests are performed using two different setups: a free-falling droplet (FFD) rig and a suspended droplet (SD) facility, following a systematic study that is considered especially pertinent for particle-laden fuels. The reported results demonstrate, for the first time, a great influence of the test method on some of the observed behaviors, which can perfectly justify some contradictions and even inconsistencies observed in previous works. Tests on unsuspended nanodiesel droplets provide smooth evaporation curves until the onset of a single and violent microexplosion that shatters the droplets, whereas the testing of suspended droplets yields a fluctuating evaporation process, with a wide range of sequential disruptive phenomena of different intensities (swelling, puffing, weak microexplosions). These clear differences point to the impact of the suspension filaments on disruptive behaviors for the range of conditions explored, even when very thin ceramic fibers are employed. In spite of these differences, some common features have also been identified. Namely, the addition of NPs does not drive significant changes in the droplet evaporation rate, probably due to the small impact of thermal radiation for the tested conditions. However, the onset of disruptive phenomena shortens the liquid conversion times as compared to neat diesel, with an earlier occurrence as the NP concentration increases, especially for FFD tests. Among the two tested nanoparticles, ceria shows significantly stronger disruptive events and also a progressive reduction in evaporation rate for unsuspended droplets, which is consistent with the formation of a less permeable shell for this kind of NP.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"275 ","pages":"Article 114060"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct evaporation and combustion behaviors of suspended and unsuspended nanodiesel droplets\",\"authors\":\"Álvaro Muelas,&nbsp;Taha Poonawala,&nbsp;Javier Ballester\",\"doi\":\"10.1016/j.combustflame.2025.114060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work reports the main evaporation and combustion characteristics of diesel droplets doped with different concentrations of alumina and ceria nanoparticles (NPs) for a range of conditions scarcely explored and relevant for combustion applications: high-temperature and reducing/oxidizing atmospheres (0/10 % O<sub>2</sub>). Due to the potential influence of the particular experimental conditions, all tests are performed using two different setups: a free-falling droplet (FFD) rig and a suspended droplet (SD) facility, following a systematic study that is considered especially pertinent for particle-laden fuels. The reported results demonstrate, for the first time, a great influence of the test method on some of the observed behaviors, which can perfectly justify some contradictions and even inconsistencies observed in previous works. Tests on unsuspended nanodiesel droplets provide smooth evaporation curves until the onset of a single and violent microexplosion that shatters the droplets, whereas the testing of suspended droplets yields a fluctuating evaporation process, with a wide range of sequential disruptive phenomena of different intensities (swelling, puffing, weak microexplosions). These clear differences point to the impact of the suspension filaments on disruptive behaviors for the range of conditions explored, even when very thin ceramic fibers are employed. In spite of these differences, some common features have also been identified. Namely, the addition of NPs does not drive significant changes in the droplet evaporation rate, probably due to the small impact of thermal radiation for the tested conditions. However, the onset of disruptive phenomena shortens the liquid conversion times as compared to neat diesel, with an earlier occurrence as the NP concentration increases, especially for FFD tests. Among the two tested nanoparticles, ceria shows significantly stronger disruptive events and also a progressive reduction in evaporation rate for unsuspended droplets, which is consistent with the formation of a less permeable shell for this kind of NP.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"275 \",\"pages\":\"Article 114060\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218025000987\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025000987","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct evaporation and combustion behaviors of suspended and unsuspended nanodiesel droplets
This work reports the main evaporation and combustion characteristics of diesel droplets doped with different concentrations of alumina and ceria nanoparticles (NPs) for a range of conditions scarcely explored and relevant for combustion applications: high-temperature and reducing/oxidizing atmospheres (0/10 % O2). Due to the potential influence of the particular experimental conditions, all tests are performed using two different setups: a free-falling droplet (FFD) rig and a suspended droplet (SD) facility, following a systematic study that is considered especially pertinent for particle-laden fuels. The reported results demonstrate, for the first time, a great influence of the test method on some of the observed behaviors, which can perfectly justify some contradictions and even inconsistencies observed in previous works. Tests on unsuspended nanodiesel droplets provide smooth evaporation curves until the onset of a single and violent microexplosion that shatters the droplets, whereas the testing of suspended droplets yields a fluctuating evaporation process, with a wide range of sequential disruptive phenomena of different intensities (swelling, puffing, weak microexplosions). These clear differences point to the impact of the suspension filaments on disruptive behaviors for the range of conditions explored, even when very thin ceramic fibers are employed. In spite of these differences, some common features have also been identified. Namely, the addition of NPs does not drive significant changes in the droplet evaporation rate, probably due to the small impact of thermal radiation for the tested conditions. However, the onset of disruptive phenomena shortens the liquid conversion times as compared to neat diesel, with an earlier occurrence as the NP concentration increases, especially for FFD tests. Among the two tested nanoparticles, ceria shows significantly stronger disruptive events and also a progressive reduction in evaporation rate for unsuspended droplets, which is consistent with the formation of a less permeable shell for this kind of NP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Flame describing function of conical laminar premixed flames subjected to parasite-velocity decoupled equivalence ratio oscillation Comparing the low-temperature oxidation chemistry of butane isomers with ozone addition: An experimental and modeling study Shock-induced drop size and distributions Validation and improvement of dimethyl ether kinetic models: Insights from ȮH laser-absorption measurements across a wide pressure range Effect of the blast wave interaction on the flame heat release & droplet dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1