Jiezhong Huang, Sijie Yuan, Dongsheng Li, Tao Jiang
{"title":"基于环境和运行变化下 PCA 欧氏距离预测误差的新型非线性纯输出损伤检测方法","authors":"Jiezhong Huang, Sijie Yuan, Dongsheng Li, Tao Jiang","doi":"10.1155/stc/4684985","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Vibration-based damage detection relies on changes in structural dynamic features. However, environmental and operational variations (EOVs) can cause changes in dynamic features that mask those caused by damage. In addition, the EOV effects on dynamic features are often nonlinear, which limits the application of many linear damage detection methods. A novel nonlinear output-only method is proposed to address this. This method leverages variational mode decomposition (VMD) as a preprocessing step to remove seasonal patterns and noise from the modal frequencies. The first modes of the decomposition results (IMF1 signals) are then used to calculate the Euclidean distance based on the residual obtained by the principal component analysis (PCA) method. To eliminate the nonlinear EOV effects and provide normalized damage features for reliable continuous dynamic monitoring, a Gaussian process regression (GPR) model is trained to learn the underlying calculation rule of the PCA Euclidean distance. Due to the linear nature of PCA, the nonlinear EOV effects are still retained in both the PCA Euclidean distance and the GPR–predicted value. Through a subtraction process, their common nonlinear environmental effects can be removed, and the resulting prediction error can serve as a normalized feature sensitive to structural damage. The proposed method is validated through a simulated 7-DOF example and real data from the Z24 bridge, with several comparisons highlighting its effectiveness.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4684985","citationCount":"0","resultStr":"{\"title\":\"A Novel Nonlinear Output-Only Damage Detection Method Based on the Prediction Error of PCA Euclidean Distances Under Environmental and Operational Variations\",\"authors\":\"Jiezhong Huang, Sijie Yuan, Dongsheng Li, Tao Jiang\",\"doi\":\"10.1155/stc/4684985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Vibration-based damage detection relies on changes in structural dynamic features. However, environmental and operational variations (EOVs) can cause changes in dynamic features that mask those caused by damage. In addition, the EOV effects on dynamic features are often nonlinear, which limits the application of many linear damage detection methods. A novel nonlinear output-only method is proposed to address this. This method leverages variational mode decomposition (VMD) as a preprocessing step to remove seasonal patterns and noise from the modal frequencies. The first modes of the decomposition results (IMF1 signals) are then used to calculate the Euclidean distance based on the residual obtained by the principal component analysis (PCA) method. To eliminate the nonlinear EOV effects and provide normalized damage features for reliable continuous dynamic monitoring, a Gaussian process regression (GPR) model is trained to learn the underlying calculation rule of the PCA Euclidean distance. Due to the linear nature of PCA, the nonlinear EOV effects are still retained in both the PCA Euclidean distance and the GPR–predicted value. Through a subtraction process, their common nonlinear environmental effects can be removed, and the resulting prediction error can serve as a normalized feature sensitive to structural damage. The proposed method is validated through a simulated 7-DOF example and real data from the Z24 bridge, with several comparisons highlighting its effectiveness.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4684985\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/4684985\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/4684985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A Novel Nonlinear Output-Only Damage Detection Method Based on the Prediction Error of PCA Euclidean Distances Under Environmental and Operational Variations
Vibration-based damage detection relies on changes in structural dynamic features. However, environmental and operational variations (EOVs) can cause changes in dynamic features that mask those caused by damage. In addition, the EOV effects on dynamic features are often nonlinear, which limits the application of many linear damage detection methods. A novel nonlinear output-only method is proposed to address this. This method leverages variational mode decomposition (VMD) as a preprocessing step to remove seasonal patterns and noise from the modal frequencies. The first modes of the decomposition results (IMF1 signals) are then used to calculate the Euclidean distance based on the residual obtained by the principal component analysis (PCA) method. To eliminate the nonlinear EOV effects and provide normalized damage features for reliable continuous dynamic monitoring, a Gaussian process regression (GPR) model is trained to learn the underlying calculation rule of the PCA Euclidean distance. Due to the linear nature of PCA, the nonlinear EOV effects are still retained in both the PCA Euclidean distance and the GPR–predicted value. Through a subtraction process, their common nonlinear environmental effects can be removed, and the resulting prediction error can serve as a normalized feature sensitive to structural damage. The proposed method is validated through a simulated 7-DOF example and real data from the Z24 bridge, with several comparisons highlighting its effectiveness.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.