IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-02-22 DOI:10.1016/j.aei.2025.103224
Tao Sun , Qipei Fan , Yi Shao
{"title":"Deep learning-based rebar detection and instance segmentation in images","authors":"Tao Sun ,&nbsp;Qipei Fan ,&nbsp;Yi Shao","doi":"10.1016/j.aei.2025.103224","DOIUrl":null,"url":null,"abstract":"<div><div>Automated rebar cage assembly and quality inspection rely on reliable rebar perception. Recent studies have explored image-based rebar perception via object detection and instance segmentation algorithms. However, existing models are limited across various scenarios, especially with different rebar categories, arrangement patterns, and camera views, which limits their application. This is primarily attributed to the absence of a benchmark considering these factors. This study introduces an image benchmark designed for the effective training and selection of rebar detection and instance segmentation algorithms. It is the first to encompass two types of commonly used rebars, multiple camera views, and various rebar placement patterns at different assembly phases in a single dataset. Six object detection methods and four instance segmentation methods are evaluated to assess the applicability of the state-of-the-art methods. Additionally, a new shape-prior-based post-processing method is developed to address the merged detection problem in clustering. The experiment shows that Deformable DETR and Mask2Former achieved the highest bounding box mAP (80.4) and mask mAP (66.3) respectively. The Simple Copy-Paste technique was introduced, improving the mask mAP of Mask2Former by 2.8 points. Finally, the developed model was validated in the real-world scenarios of three downstream tasks. Notably, in the rebar spacing measurement task, the proposed post-processing method improves Mask2Former by increasing its bounding box mAP by 18.0 and mask mAP by 2.4.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103224"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147403462500117X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

钢筋笼的自动装配和质量检测依赖于可靠的钢筋感知。最近的研究通过对象检测和实例分割算法探索了基于图像的钢筋感知。然而,现有的模型在各种场景下都存在局限性,尤其是在不同的钢筋类别、排列模式和相机视图下,这限制了它们的应用。这主要是因为缺乏考虑这些因素的基准。本研究介绍了一种图像基准,旨在有效地训练和选择钢筋检测和实例分割算法。这是首个在单一数据集中包含两种常用钢筋、多个摄像机视图以及不同装配阶段的各种钢筋放置模式的基准。对六种对象检测方法和四种实例分割方法进行了评估,以评估最先进方法的适用性。此外,还开发了一种新的基于形状优先的后处理方法,以解决聚类中的合并检测问题。实验结果表明,Deformable DETR 和 Mask2Former 分别获得了最高的边界框 mAP(80.4)和掩膜 mAP(66.3)。引入简单复制粘贴技术后,Mask2Former 的掩膜 mAP 提高了 2.8 个点。最后,在三个下游任务的实际场景中对所开发的模型进行了验证。值得注意的是,在钢筋间距测量任务中,所提出的后处理方法改善了 Mask2Former,使其边界框 mAP 增加了 18.0,掩膜 mAP 增加了 2.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based rebar detection and instance segmentation in images
Automated rebar cage assembly and quality inspection rely on reliable rebar perception. Recent studies have explored image-based rebar perception via object detection and instance segmentation algorithms. However, existing models are limited across various scenarios, especially with different rebar categories, arrangement patterns, and camera views, which limits their application. This is primarily attributed to the absence of a benchmark considering these factors. This study introduces an image benchmark designed for the effective training and selection of rebar detection and instance segmentation algorithms. It is the first to encompass two types of commonly used rebars, multiple camera views, and various rebar placement patterns at different assembly phases in a single dataset. Six object detection methods and four instance segmentation methods are evaluated to assess the applicability of the state-of-the-art methods. Additionally, a new shape-prior-based post-processing method is developed to address the merged detection problem in clustering. The experiment shows that Deformable DETR and Mask2Former achieved the highest bounding box mAP (80.4) and mask mAP (66.3) respectively. The Simple Copy-Paste technique was introduced, improving the mask mAP of Mask2Former by 2.8 points. Finally, the developed model was validated in the real-world scenarios of three downstream tasks. Notably, in the rebar spacing measurement task, the proposed post-processing method improves Mask2Former by increasing its bounding box mAP by 18.0 and mask mAP by 2.4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Fast detection of short circuits in copper electrolytic refining with PCA and a branching perceptron Mitigating potential risk via counterfactual explanation generation in blast-based tunnel construction A multiple-criteria sensor selection framework based on qualitative physical models Crafting user-centric prompts for UI generations based on Kansei engineering and knowledge graph Predicting the performance status of aero-engines using a spatio-temporal decoupled digital twin modeling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1