采用自适应刀具路径驱动的 SPIF 工艺制造的 Ti-grade 2 种植体的多尺度残余应力分析和微观结构表征

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2025-02-18 DOI:10.1016/j.matchar.2025.114861
Arun Sharma , Parnika Shrivastava , Aniket Nagargoje , Amrut Mulay
{"title":"采用自适应刀具路径驱动的 SPIF 工艺制造的 Ti-grade 2 种植体的多尺度残余应力分析和微观结构表征","authors":"Arun Sharma ,&nbsp;Parnika Shrivastava ,&nbsp;Aniket Nagargoje ,&nbsp;Amrut Mulay","doi":"10.1016/j.matchar.2025.114861","DOIUrl":null,"url":null,"abstract":"<div><div>Single Point Incremental Forming of titanium alloys for biomedical implants presents a unique challenge in balancing geometrical accuracy with the control of residual stresses. The proposed methodology introduces a novel curvature-driven adaptive toolpath for incremental forming, overcoming the limitations of conventional constant depth spiral and existing adaptive strategies. Unlike STL-based adaptive methods that rely on volumetric error correction by adding slices between consecutive layers, this approach optimizes the toolpath by removing redundant slices. By adjusting slice, the process assigns density values according to local curvature fluctuations thus creating more efficient forming while reducing forming time. Electron Backscatter Diffraction is utilized to measure the evolution of microstructure through an evaluation of misorientation distribution, deformation twinning and geometrically necessary dislocation density. X-ray diffraction technology and micro-scale residual stress measurement techniques are used to measure macro and micro residual stress fields in the produced implants. The present work correlates the tool path strategies with the observed residual stress distribution along with microstructural characteristics which uncovered the underlying deformation mechanism in implants formed by SPIF. Results highlight that adaptive tool path-driven SPIF process led to decreased amounts of residual stress while creating more uniform stress patterns within Ti-Grade 2 implants. The implant formed with adaptive tool path resulted in higher homogeneity in stress distribution with lower localized strain concentrations in comparison to those formed with conventional tool paths. In addition, microstructural characteristics denoted more uniform plastic deformation across the formed implant. The study demonstrates that the modifications in SPIF tool path bring superior results in product quality. Achieving desired residual stress states and microstructural characteristics becomes possible through SPIF which delivers improved dimensional accuracy and reliability of the formed Ti-Grade 2 implants.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"222 ","pages":"Article 114861"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale residual stress analysis and microstructure characterization of Ti-grade 2 implant fabricated by adaptive tool path-driven SPIF process\",\"authors\":\"Arun Sharma ,&nbsp;Parnika Shrivastava ,&nbsp;Aniket Nagargoje ,&nbsp;Amrut Mulay\",\"doi\":\"10.1016/j.matchar.2025.114861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single Point Incremental Forming of titanium alloys for biomedical implants presents a unique challenge in balancing geometrical accuracy with the control of residual stresses. The proposed methodology introduces a novel curvature-driven adaptive toolpath for incremental forming, overcoming the limitations of conventional constant depth spiral and existing adaptive strategies. Unlike STL-based adaptive methods that rely on volumetric error correction by adding slices between consecutive layers, this approach optimizes the toolpath by removing redundant slices. By adjusting slice, the process assigns density values according to local curvature fluctuations thus creating more efficient forming while reducing forming time. Electron Backscatter Diffraction is utilized to measure the evolution of microstructure through an evaluation of misorientation distribution, deformation twinning and geometrically necessary dislocation density. X-ray diffraction technology and micro-scale residual stress measurement techniques are used to measure macro and micro residual stress fields in the produced implants. The present work correlates the tool path strategies with the observed residual stress distribution along with microstructural characteristics which uncovered the underlying deformation mechanism in implants formed by SPIF. Results highlight that adaptive tool path-driven SPIF process led to decreased amounts of residual stress while creating more uniform stress patterns within Ti-Grade 2 implants. The implant formed with adaptive tool path resulted in higher homogeneity in stress distribution with lower localized strain concentrations in comparison to those formed with conventional tool paths. In addition, microstructural characteristics denoted more uniform plastic deformation across the formed implant. The study demonstrates that the modifications in SPIF tool path bring superior results in product quality. Achieving desired residual stress states and microstructural characteristics becomes possible through SPIF which delivers improved dimensional accuracy and reliability of the formed Ti-Grade 2 implants.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"222 \",\"pages\":\"Article 114861\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325001500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325001500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale residual stress analysis and microstructure characterization of Ti-grade 2 implant fabricated by adaptive tool path-driven SPIF process
Single Point Incremental Forming of titanium alloys for biomedical implants presents a unique challenge in balancing geometrical accuracy with the control of residual stresses. The proposed methodology introduces a novel curvature-driven adaptive toolpath for incremental forming, overcoming the limitations of conventional constant depth spiral and existing adaptive strategies. Unlike STL-based adaptive methods that rely on volumetric error correction by adding slices between consecutive layers, this approach optimizes the toolpath by removing redundant slices. By adjusting slice, the process assigns density values according to local curvature fluctuations thus creating more efficient forming while reducing forming time. Electron Backscatter Diffraction is utilized to measure the evolution of microstructure through an evaluation of misorientation distribution, deformation twinning and geometrically necessary dislocation density. X-ray diffraction technology and micro-scale residual stress measurement techniques are used to measure macro and micro residual stress fields in the produced implants. The present work correlates the tool path strategies with the observed residual stress distribution along with microstructural characteristics which uncovered the underlying deformation mechanism in implants formed by SPIF. Results highlight that adaptive tool path-driven SPIF process led to decreased amounts of residual stress while creating more uniform stress patterns within Ti-Grade 2 implants. The implant formed with adaptive tool path resulted in higher homogeneity in stress distribution with lower localized strain concentrations in comparison to those formed with conventional tool paths. In addition, microstructural characteristics denoted more uniform plastic deformation across the formed implant. The study demonstrates that the modifications in SPIF tool path bring superior results in product quality. Achieving desired residual stress states and microstructural characteristics becomes possible through SPIF which delivers improved dimensional accuracy and reliability of the formed Ti-Grade 2 implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Achieving ultra-high strength, good toughness and cost reduction in secondary hardening steel via dual precipitation High thermal stability of Si-containing Al-Zn-Mg-Cu crossover alloy caused by metastable GPB-II phase Strengthening magnetic and corrosion performances of NdFeB magnets via grain boundary diffusion with Tb element Microstructural evolution of NiCoCrMo medium-entropy alloy and its corrosion resistance in hydrofluoric acid Microstructure informatics: Using computer vision for the characterization of dendrite growth phenomena in Ni-base single crystal Superalloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1