Seid Muhie, Aarti Gautam, John Mylroie, Bintu Sowe, Ross Campbell, Edward J Perkins, Rasha Hammamieh, Natàlia Garcia-Reyero
{"title":"环境化学污染物对微生物组多样性的影响:射枪元基因组学的启示","authors":"Seid Muhie, Aarti Gautam, John Mylroie, Bintu Sowe, Ross Campbell, Edward J Perkins, Rasha Hammamieh, Natàlia Garcia-Reyero","doi":"10.3390/toxics13020142","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical exposure in the environment can adversely affect the biodiversity of living organisms, particularly when persistent chemicals accumulate over time and disrupt the balance of microbial populations. In this study, we examined how chemical contaminants influence microorganisms in sediment and overlaying water samples collected from the Kinnickinnic, Milwaukee, and Menomonee Rivers near Milwaukee, Wisconsin, USA. We characterized these samples using shotgun metagenomic sequencing to assess microbiome diversity and employed chemical analyses to quantify more than 200 compounds spanning 16 broad classes, including pesticides, industrial products, personal care products, and pharmaceuticals. Integrative and differential comparative analyses of the combined datasets revealed that microbial density, approximated by adjusted total sequence reads, declined with increasing total chemical concentrations. Protozoan, metazoan, and fungal populations were negatively correlated with higher chemical concentrations, whereas certain bacterial (particularly Proteobacteria) and archaeal populations showed positive correlations. As expected, sediment samples exhibited higher concentrations and a wider dynamic range of chemicals compared to water samples. Varying levels of chemical contamination appeared to shape the distribution of microbial taxa, with some bacterial, metazoan, and protozoan populations present only at certain sites or in specific sample types (sediment versus water). These findings suggest that microbial diversity may be linked to both the type and concentration of chemicals present. Additionally, this study demonstrates the potential roles of multiple microbial kingdoms in degrading environmental pollutants, emphasizing the metabolic versatility of bacteria and archaea in processing complex contaminants such as polyaromatic hydrocarbons and bisphenols. Through functional and resistance gene profiling, we observed that multi-kingdom microbial consortia-including bacteria, fungi, and protozoa-can contribute to bioremediation strategies and help restore ecological balance in contaminated ecosystems. This approach may also serve as a valuable proxy for assessing the types and levels of chemical pollutants, as well as their effects on biodiversity.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Environmental Chemical Pollutants on Microbiome Diversity: Insights from Shotgun Metagenomics.\",\"authors\":\"Seid Muhie, Aarti Gautam, John Mylroie, Bintu Sowe, Ross Campbell, Edward J Perkins, Rasha Hammamieh, Natàlia Garcia-Reyero\",\"doi\":\"10.3390/toxics13020142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical exposure in the environment can adversely affect the biodiversity of living organisms, particularly when persistent chemicals accumulate over time and disrupt the balance of microbial populations. In this study, we examined how chemical contaminants influence microorganisms in sediment and overlaying water samples collected from the Kinnickinnic, Milwaukee, and Menomonee Rivers near Milwaukee, Wisconsin, USA. We characterized these samples using shotgun metagenomic sequencing to assess microbiome diversity and employed chemical analyses to quantify more than 200 compounds spanning 16 broad classes, including pesticides, industrial products, personal care products, and pharmaceuticals. Integrative and differential comparative analyses of the combined datasets revealed that microbial density, approximated by adjusted total sequence reads, declined with increasing total chemical concentrations. Protozoan, metazoan, and fungal populations were negatively correlated with higher chemical concentrations, whereas certain bacterial (particularly Proteobacteria) and archaeal populations showed positive correlations. As expected, sediment samples exhibited higher concentrations and a wider dynamic range of chemicals compared to water samples. Varying levels of chemical contamination appeared to shape the distribution of microbial taxa, with some bacterial, metazoan, and protozoan populations present only at certain sites or in specific sample types (sediment versus water). These findings suggest that microbial diversity may be linked to both the type and concentration of chemicals present. Additionally, this study demonstrates the potential roles of multiple microbial kingdoms in degrading environmental pollutants, emphasizing the metabolic versatility of bacteria and archaea in processing complex contaminants such as polyaromatic hydrocarbons and bisphenols. Through functional and resistance gene profiling, we observed that multi-kingdom microbial consortia-including bacteria, fungi, and protozoa-can contribute to bioremediation strategies and help restore ecological balance in contaminated ecosystems. This approach may also serve as a valuable proxy for assessing the types and levels of chemical pollutants, as well as their effects on biodiversity.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13020142\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020142","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of Environmental Chemical Pollutants on Microbiome Diversity: Insights from Shotgun Metagenomics.
Chemical exposure in the environment can adversely affect the biodiversity of living organisms, particularly when persistent chemicals accumulate over time and disrupt the balance of microbial populations. In this study, we examined how chemical contaminants influence microorganisms in sediment and overlaying water samples collected from the Kinnickinnic, Milwaukee, and Menomonee Rivers near Milwaukee, Wisconsin, USA. We characterized these samples using shotgun metagenomic sequencing to assess microbiome diversity and employed chemical analyses to quantify more than 200 compounds spanning 16 broad classes, including pesticides, industrial products, personal care products, and pharmaceuticals. Integrative and differential comparative analyses of the combined datasets revealed that microbial density, approximated by adjusted total sequence reads, declined with increasing total chemical concentrations. Protozoan, metazoan, and fungal populations were negatively correlated with higher chemical concentrations, whereas certain bacterial (particularly Proteobacteria) and archaeal populations showed positive correlations. As expected, sediment samples exhibited higher concentrations and a wider dynamic range of chemicals compared to water samples. Varying levels of chemical contamination appeared to shape the distribution of microbial taxa, with some bacterial, metazoan, and protozoan populations present only at certain sites or in specific sample types (sediment versus water). These findings suggest that microbial diversity may be linked to both the type and concentration of chemicals present. Additionally, this study demonstrates the potential roles of multiple microbial kingdoms in degrading environmental pollutants, emphasizing the metabolic versatility of bacteria and archaea in processing complex contaminants such as polyaromatic hydrocarbons and bisphenols. Through functional and resistance gene profiling, we observed that multi-kingdom microbial consortia-including bacteria, fungi, and protozoa-can contribute to bioremediation strategies and help restore ecological balance in contaminated ecosystems. This approach may also serve as a valuable proxy for assessing the types and levels of chemical pollutants, as well as their effects on biodiversity.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.