IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Radar Sonar and Navigation Pub Date : 2025-02-26 DOI:10.1049/rsn2.70001
Junxiang Cao, Tong Wang, Weichen Cui
{"title":"Sparse Bayesian learning using hierarchical synthesis prior for STAP","authors":"Junxiang Cao,&nbsp;Tong Wang,&nbsp;Weichen Cui","doi":"10.1049/rsn2.70001","DOIUrl":null,"url":null,"abstract":"<p>Space–time adaptive processing (STAP) can effectively detect moving targets in the background of ground clutter, but the performance will drop sharply when the training samples are limited. In this paper, to improve the clutter suppression performance when the training samples are limited, the authors propose a novel STAP algorithm based on sparse Bayesian learning (SBL) using a hierarchical synthesis prior. Firstly, we construct a novel three-level hierarchical synthesis prior (HSP) model, which promotes the sparsity more significantly than traditional priors used in SBL. Secondly, in the framework of type-II maximum likelihood approach, a novel iterative update criterion for hyperparameters is derived. Thirdly, in order to reduce the computational burden, the authors design a novel local space–time dictionary to transform the full-dimensional clutter spectrum recovery problem into a local clutter spectrum recovery problem. Numerical results with both simulated and measured data demonstrate the excellent performance and relatively high computational efficiency of the proposed method.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70001","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

时空自适应处理(STAP)可以有效探测地面杂波背景中的移动目标,但当训练样本有限时,其性能会急剧下降。在本文中,为了提高训练样本有限时的杂波抑制性能,作者提出了一种基于稀疏贝叶斯学习(SBL)、使用分层合成先验的新型 STAP 算法。首先,我们构建了一个新颖的三级分层合成先验(HSP)模型,与 SBL 中使用的传统先验相比,它能更显著地提高稀疏性。其次,在第二类最大似然法的框架下,推导出一种新颖的超参数迭代更新准则。第三,为了减轻计算负担,作者设计了一种新颖的局部时空字典,将全维杂波频谱恢复问题转化为局部杂波频谱恢复问题。模拟和测量数据的数值结果表明,所提方法性能优异,计算效率相对较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Bayesian learning using hierarchical synthesis prior for STAP

Space–time adaptive processing (STAP) can effectively detect moving targets in the background of ground clutter, but the performance will drop sharply when the training samples are limited. In this paper, to improve the clutter suppression performance when the training samples are limited, the authors propose a novel STAP algorithm based on sparse Bayesian learning (SBL) using a hierarchical synthesis prior. Firstly, we construct a novel three-level hierarchical synthesis prior (HSP) model, which promotes the sparsity more significantly than traditional priors used in SBL. Secondly, in the framework of type-II maximum likelihood approach, a novel iterative update criterion for hyperparameters is derived. Thirdly, in order to reduce the computational burden, the authors design a novel local space–time dictionary to transform the full-dimensional clutter spectrum recovery problem into a local clutter spectrum recovery problem. Numerical results with both simulated and measured data demonstrate the excellent performance and relatively high computational efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
期刊最新文献
Radar Intelligent Game Anti-Jamming Strategy Optimisation Based on Jamming Behaviour Inference and Active Induction Distributed Joint Emitter Detection and Tracking With Parallel Consensus on Likelihood and Prediction Ambiguity and area preserving linear transformations in over-the-horizon radar A X-Ray Pulsar/Inter-Satellite Ranging/Landmark Integrated Navigation Method for Deep Space Exploration Multistatic Localisation in Passive Radar System for LEO Space Objects Observation Using Terrestrial Illuminators and LOFAR Radio Telescope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1