整合网络药理学、分子对接和生物信息学,探索刺五加根茎药治疗喉癌的机制

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-02-26 DOI:10.1007/s11030-025-11142-5
Meiling Zheng, Rui Zhang, Xinxing Yang, Feiyan Wang, Xiaodi Guo, Long Li, Jin Wang, Yajun Shi, Shan Miao, Wei Quan, Shanbo Ma, Xiaopeng Shi
{"title":"整合网络药理学、分子对接和生物信息学,探索刺五加根茎药治疗喉癌的机制","authors":"Meiling Zheng, Rui Zhang, Xinxing Yang, Feiyan Wang, Xiaodi Guo, Long Li, Jin Wang, Yajun Shi, Shan Miao, Wei Quan, Shanbo Ma, Xiaopeng Shi","doi":"10.1007/s11030-025-11142-5","DOIUrl":null,"url":null,"abstract":"<p><p>Sparganii Rhizoma (SR) has demonstrated promising anticancer effects across various malignancies; however, its mechanisms in laryngeal cancer (LC) remain poorly understood. This study employs network pharmacology and molecular docking to investigate the molecular mechanisms underlying SR's therapeutic effects on LC, providing novel insights for its potential use in treatment. Active compounds and targets of SR were identified through the TCMSP and Pharmmapper databases, while LC-related targets were sourced from GEO, GeneCards, OMIM, and PharmGkb databases. A Venn diagram generated from these datasets highlighted 58 overlapping targets. The STRING database and Cytoscape 3.9.1 software facilitated the construction of a protein-protein interaction network for these targets, and R language analysis revealed 15 core targets. GO and KEGG enrichment analyses, conducted with the ''clusterProfiler'' package, identified relevant biological processes, cellular components, and molecular functions associated with LC treatment. KEGG analysis suggested SR primarily regulates pathways such as TNF, IL-17, and P53. Molecular docking confirmed SR's ability to bind effectively to the 15 core targets. Molecular dynamics simulations further validated stable protein-ligand interactions for MAPK1, GSK3B, and MAPK14. Core target validation across transcriptional, translational, and immune infiltration levels was performed using GEPIA, HPA, cBioPortal, and TIMER databases. In conclusion, network pharmacology, molecular docking, and dynamics simulations provided insights into SR's mechanism in LC treatment, forming a theoretical basis for further investigation of its therapeutic potential.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer.\",\"authors\":\"Meiling Zheng, Rui Zhang, Xinxing Yang, Feiyan Wang, Xiaodi Guo, Long Li, Jin Wang, Yajun Shi, Shan Miao, Wei Quan, Shanbo Ma, Xiaopeng Shi\",\"doi\":\"10.1007/s11030-025-11142-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sparganii Rhizoma (SR) has demonstrated promising anticancer effects across various malignancies; however, its mechanisms in laryngeal cancer (LC) remain poorly understood. This study employs network pharmacology and molecular docking to investigate the molecular mechanisms underlying SR's therapeutic effects on LC, providing novel insights for its potential use in treatment. Active compounds and targets of SR were identified through the TCMSP and Pharmmapper databases, while LC-related targets were sourced from GEO, GeneCards, OMIM, and PharmGkb databases. A Venn diagram generated from these datasets highlighted 58 overlapping targets. The STRING database and Cytoscape 3.9.1 software facilitated the construction of a protein-protein interaction network for these targets, and R language analysis revealed 15 core targets. GO and KEGG enrichment analyses, conducted with the ''clusterProfiler'' package, identified relevant biological processes, cellular components, and molecular functions associated with LC treatment. KEGG analysis suggested SR primarily regulates pathways such as TNF, IL-17, and P53. Molecular docking confirmed SR's ability to bind effectively to the 15 core targets. Molecular dynamics simulations further validated stable protein-ligand interactions for MAPK1, GSK3B, and MAPK14. Core target validation across transcriptional, translational, and immune infiltration levels was performed using GEPIA, HPA, cBioPortal, and TIMER databases. In conclusion, network pharmacology, molecular docking, and dynamics simulations provided insights into SR's mechanism in LC treatment, forming a theoretical basis for further investigation of its therapeutic potential.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11142-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11142-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer.

Sparganii Rhizoma (SR) has demonstrated promising anticancer effects across various malignancies; however, its mechanisms in laryngeal cancer (LC) remain poorly understood. This study employs network pharmacology and molecular docking to investigate the molecular mechanisms underlying SR's therapeutic effects on LC, providing novel insights for its potential use in treatment. Active compounds and targets of SR were identified through the TCMSP and Pharmmapper databases, while LC-related targets were sourced from GEO, GeneCards, OMIM, and PharmGkb databases. A Venn diagram generated from these datasets highlighted 58 overlapping targets. The STRING database and Cytoscape 3.9.1 software facilitated the construction of a protein-protein interaction network for these targets, and R language analysis revealed 15 core targets. GO and KEGG enrichment analyses, conducted with the ''clusterProfiler'' package, identified relevant biological processes, cellular components, and molecular functions associated with LC treatment. KEGG analysis suggested SR primarily regulates pathways such as TNF, IL-17, and P53. Molecular docking confirmed SR's ability to bind effectively to the 15 core targets. Molecular dynamics simulations further validated stable protein-ligand interactions for MAPK1, GSK3B, and MAPK14. Core target validation across transcriptional, translational, and immune infiltration levels was performed using GEPIA, HPA, cBioPortal, and TIMER databases. In conclusion, network pharmacology, molecular docking, and dynamics simulations provided insights into SR's mechanism in LC treatment, forming a theoretical basis for further investigation of its therapeutic potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives. Computational framework for minimizing off-target toxicity in capecitabine treatment using natural compounds. Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer. Structural insights of AKT and its activation mechanism for drug development. Identification of effective synthetic molecules against viral-induced cytokine release syndrome using in silico and in vitro approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1