具有废水处理吸附材料潜力的创新型双网水凝胶的合成与表征。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-02-10 DOI:10.3390/polym17040463
Alexandra Vieru, Onur Yilmaz, Alina Gabriela Rusu, Cătălina Natalia Yilmaz, Alina Ghilan, Loredana Elena Nita
{"title":"具有废水处理吸附材料潜力的创新型双网水凝胶的合成与表征。","authors":"Alexandra Vieru, Onur Yilmaz, Alina Gabriela Rusu, Cătălina Natalia Yilmaz, Alina Ghilan, Loredana Elena Nita","doi":"10.3390/polym17040463","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, large amounts of wastewater arise from various industrial applications. The discharge of wastewater into the environment represents a threat to the aquatic ecosystem and human health. Thus, in the present study, innovative double-network (DN) hydrogels with pH-sensitive features and applicability as adsorbents in the treatment of leather dye wastewater were prepared. The polyelectrolyte, poly(<i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate (PDMAEMA), was obtained via the radical polymerization process, while the supramolecular structure was co-assembled through physical interactions. As a novelty, the double network was obtained through the interpenetration of the supramolecular network in the cross-linked polymeric one. The new hydrogels were physico-chemically and morphologically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and in terms of thermogravimetric analysis (TGA), swelling degree measurements, and dye adsorption studies. The DN hydrogels present interconnected macropores and high thermal stability. The swelling capacity of the dual network gels highlights a superadsorbent behavior at pH 3. Furthermore, the dye adsorption study highlights the effects of several variables (pH, concentration dose of adsorbent) on the ability of the gels to adsorb an anionic dye. The adsorption kinetics of the anionic dyes fitted the pseudo-first-order model (PFO). The estimated maximum adsorption capacities for the anionic dyes was 451 mg g<sup>-1</sup> for PDMAEMA and 545 mg g<sup>-1</sup> for DN gel.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment.\",\"authors\":\"Alexandra Vieru, Onur Yilmaz, Alina Gabriela Rusu, Cătălina Natalia Yilmaz, Alina Ghilan, Loredana Elena Nita\",\"doi\":\"10.3390/polym17040463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, large amounts of wastewater arise from various industrial applications. The discharge of wastewater into the environment represents a threat to the aquatic ecosystem and human health. Thus, in the present study, innovative double-network (DN) hydrogels with pH-sensitive features and applicability as adsorbents in the treatment of leather dye wastewater were prepared. The polyelectrolyte, poly(<i>N</i>,<i>N</i>-dimethylaminoethyl methacrylate (PDMAEMA), was obtained via the radical polymerization process, while the supramolecular structure was co-assembled through physical interactions. As a novelty, the double network was obtained through the interpenetration of the supramolecular network in the cross-linked polymeric one. The new hydrogels were physico-chemically and morphologically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and in terms of thermogravimetric analysis (TGA), swelling degree measurements, and dye adsorption studies. The DN hydrogels present interconnected macropores and high thermal stability. The swelling capacity of the dual network gels highlights a superadsorbent behavior at pH 3. Furthermore, the dye adsorption study highlights the effects of several variables (pH, concentration dose of adsorbent) on the ability of the gels to adsorb an anionic dye. The adsorption kinetics of the anionic dyes fitted the pseudo-first-order model (PFO). The estimated maximum adsorption capacities for the anionic dyes was 451 mg g<sup>-1</sup> for PDMAEMA and 545 mg g<sup>-1</sup> for DN gel.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17040463\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040463","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment.

Nowadays, large amounts of wastewater arise from various industrial applications. The discharge of wastewater into the environment represents a threat to the aquatic ecosystem and human health. Thus, in the present study, innovative double-network (DN) hydrogels with pH-sensitive features and applicability as adsorbents in the treatment of leather dye wastewater were prepared. The polyelectrolyte, poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA), was obtained via the radical polymerization process, while the supramolecular structure was co-assembled through physical interactions. As a novelty, the double network was obtained through the interpenetration of the supramolecular network in the cross-linked polymeric one. The new hydrogels were physico-chemically and morphologically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and in terms of thermogravimetric analysis (TGA), swelling degree measurements, and dye adsorption studies. The DN hydrogels present interconnected macropores and high thermal stability. The swelling capacity of the dual network gels highlights a superadsorbent behavior at pH 3. Furthermore, the dye adsorption study highlights the effects of several variables (pH, concentration dose of adsorbent) on the ability of the gels to adsorb an anionic dye. The adsorption kinetics of the anionic dyes fitted the pseudo-first-order model (PFO). The estimated maximum adsorption capacities for the anionic dyes was 451 mg g-1 for PDMAEMA and 545 mg g-1 for DN gel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation. Carbon Molecular Sieve Membranes from Acenaphthenequinone-Biphenyl Polymer; Synthesis, Characterization, and Effect on Gas Separation and Transport Properties. Background of New Measurement Electronic Devices with Polyelectrolyte Hydrogel Base. Changes in Heat Resistance and Mechanical Properties of Peroxide Cross-Linking HDPE: Effects of Compounding Cross-Linkers. The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1