Di Tan, Bo Zhu, Kangjian Xiao, Lijun Li, Zhekun Shi, Quan Liu, Stanislav Gorb, Huajian Gao, Jonathan T. Pham, Ze Liu, Longjian Xue
{"title":"Nanosized Contact Enables Faster, Stronger, and Liquid-Saving Capillary Adhesion","authors":"Di Tan, Bo Zhu, Kangjian Xiao, Lijun Li, Zhekun Shi, Quan Liu, Stanislav Gorb, Huajian Gao, Jonathan T. Pham, Ze Liu, Longjian Xue","doi":"10.1021/acsnano.4c14048","DOIUrl":null,"url":null,"abstract":"The nanocapillary not only contributes to the wet adhesion generated from microscale setae on the feet of many insects, such as beetles and flies, but also plays a critical role in many different fields of science and engineering like nanofabrication, chemical analysis, etc. In spite of long-standing interests and efforts, the exact physical mechanisms of nanoscale capillarity remain unclear. Here, we establish a setae-mimicking artificial system composed of porous nanorod arrays (PNAs), where the dynamic process of wet adhesion can be clearly monitored and revealed, when mineral oil is dynamically transferred to the interface between the tips of PNAs and the contacting surface. The large curvature associated with the nanosize of PNA tips endows three advantages to the insect-inspired wet adhesion: (1) shortening the time required to form stable liquid bridges, (2) enhancing the adhesion strength by 6–10 times, and (3) saving at least half of the secretions after detachment. Extra Laplace pressure and line tension originated from the nanocurved liquid at the PNA tips are responsible for the faster, stronger, and liquid-saving wet adhesion. These findings not only strengthen our understanding of the dynamic capillary effects in insect adhesion but may also offer design strategies in nanoprinting, nanorobots, and self-assembly of nanodevices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanosized Contact Enables Faster, Stronger, and Liquid-Saving Capillary Adhesion
The nanocapillary not only contributes to the wet adhesion generated from microscale setae on the feet of many insects, such as beetles and flies, but also plays a critical role in many different fields of science and engineering like nanofabrication, chemical analysis, etc. In spite of long-standing interests and efforts, the exact physical mechanisms of nanoscale capillarity remain unclear. Here, we establish a setae-mimicking artificial system composed of porous nanorod arrays (PNAs), where the dynamic process of wet adhesion can be clearly monitored and revealed, when mineral oil is dynamically transferred to the interface between the tips of PNAs and the contacting surface. The large curvature associated with the nanosize of PNA tips endows three advantages to the insect-inspired wet adhesion: (1) shortening the time required to form stable liquid bridges, (2) enhancing the adhesion strength by 6–10 times, and (3) saving at least half of the secretions after detachment. Extra Laplace pressure and line tension originated from the nanocurved liquid at the PNA tips are responsible for the faster, stronger, and liquid-saving wet adhesion. These findings not only strengthen our understanding of the dynamic capillary effects in insect adhesion but may also offer design strategies in nanoprinting, nanorobots, and self-assembly of nanodevices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.