指导小农农业的栽培品种选择:确定大田作物成熟度组的适宜性热点

IF 12.4 Q1 ENVIRONMENTAL SCIENCES Resources Environment and Sustainability Pub Date : 2025-02-24 DOI:10.1016/j.resenv.2025.100204
Uwe Grewer , Peter de Voil , Dilys S. MacCarthy , Daniel Rodriguez
{"title":"指导小农农业的栽培品种选择:确定大田作物成熟度组的适宜性热点","authors":"Uwe Grewer ,&nbsp;Peter de Voil ,&nbsp;Dilys S. MacCarthy ,&nbsp;Daniel Rodriguez","doi":"10.1016/j.resenv.2025.100204","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of suitable crop cultivars is central to the sustainable intensification of smallholder cropping systems across Sub-Saharan Africa and plays a crucial role in improving smallholder incomes and food security. Breeding programmes have significantly increased the availability of early-, mid-, and late-maturing crop cultivars tailored to the Target Population of Environments in Sub-Saharan Africa. However, there is a substantial lack of data-driven maturity group recommendations at a detailed spatial scale. The absence of targeted guidance on the suitability of maturity groups limits the ability of smallholder farmers to make optimal cultivar adoption decisions. Here, we propose a framework using gridded crop modelling to identify locally relevant maturity group recommendations at a high spatial resolution for field crops. Implementing the framework for maize in Ghana, we employ the APSIM crop model across 3927 point locations and weather records for recent thirty years. We show that mid-maturing cultivars consistently provide the highest yields across all national production locations in the major growing season. In the minor growing season, we find that early- and mid-maturing cultivars provide the highest yields across distinct spatial suitability clusters. Specifically, in the minor growing season, mid-maturing cultivars provide the highest yields in high-yielding environments, while early-maturing varieties provide the highest yields in low-yielding environments. We identify specific environment-by-management combinations for which different maturity groups are optimal. The proposed framework enables the development of spatially and seasonally tailored maturity group recommendations that take advantage of prevailing genotype-by-environment-by-management interactions. The approach can readily be scaled to other crops and countries.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"20 ","pages":"Article 100204"},"PeriodicalIF":12.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guiding cultivar choice in smallholder agriculture: Identifying suitability hotspots for maturity groups of field crops\",\"authors\":\"Uwe Grewer ,&nbsp;Peter de Voil ,&nbsp;Dilys S. MacCarthy ,&nbsp;Daniel Rodriguez\",\"doi\":\"10.1016/j.resenv.2025.100204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adoption of suitable crop cultivars is central to the sustainable intensification of smallholder cropping systems across Sub-Saharan Africa and plays a crucial role in improving smallholder incomes and food security. Breeding programmes have significantly increased the availability of early-, mid-, and late-maturing crop cultivars tailored to the Target Population of Environments in Sub-Saharan Africa. However, there is a substantial lack of data-driven maturity group recommendations at a detailed spatial scale. The absence of targeted guidance on the suitability of maturity groups limits the ability of smallholder farmers to make optimal cultivar adoption decisions. Here, we propose a framework using gridded crop modelling to identify locally relevant maturity group recommendations at a high spatial resolution for field crops. Implementing the framework for maize in Ghana, we employ the APSIM crop model across 3927 point locations and weather records for recent thirty years. We show that mid-maturing cultivars consistently provide the highest yields across all national production locations in the major growing season. In the minor growing season, we find that early- and mid-maturing cultivars provide the highest yields across distinct spatial suitability clusters. Specifically, in the minor growing season, mid-maturing cultivars provide the highest yields in high-yielding environments, while early-maturing varieties provide the highest yields in low-yielding environments. We identify specific environment-by-management combinations for which different maturity groups are optimal. The proposed framework enables the development of spatially and seasonally tailored maturity group recommendations that take advantage of prevailing genotype-by-environment-by-management interactions. The approach can readily be scaled to other crops and countries.</div></div>\",\"PeriodicalId\":34479,\"journal\":{\"name\":\"Resources Environment and Sustainability\",\"volume\":\"20 \",\"pages\":\"Article 100204\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Environment and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666916125000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916125000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guiding cultivar choice in smallholder agriculture: Identifying suitability hotspots for maturity groups of field crops
The adoption of suitable crop cultivars is central to the sustainable intensification of smallholder cropping systems across Sub-Saharan Africa and plays a crucial role in improving smallholder incomes and food security. Breeding programmes have significantly increased the availability of early-, mid-, and late-maturing crop cultivars tailored to the Target Population of Environments in Sub-Saharan Africa. However, there is a substantial lack of data-driven maturity group recommendations at a detailed spatial scale. The absence of targeted guidance on the suitability of maturity groups limits the ability of smallholder farmers to make optimal cultivar adoption decisions. Here, we propose a framework using gridded crop modelling to identify locally relevant maturity group recommendations at a high spatial resolution for field crops. Implementing the framework for maize in Ghana, we employ the APSIM crop model across 3927 point locations and weather records for recent thirty years. We show that mid-maturing cultivars consistently provide the highest yields across all national production locations in the major growing season. In the minor growing season, we find that early- and mid-maturing cultivars provide the highest yields across distinct spatial suitability clusters. Specifically, in the minor growing season, mid-maturing cultivars provide the highest yields in high-yielding environments, while early-maturing varieties provide the highest yields in low-yielding environments. We identify specific environment-by-management combinations for which different maturity groups are optimal. The proposed framework enables the development of spatially and seasonally tailored maturity group recommendations that take advantage of prevailing genotype-by-environment-by-management interactions. The approach can readily be scaled to other crops and countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
期刊最新文献
Evaluating the spatiotemporal dynamics and structural resilience of the global titanium industrial chain: Insights from trade network analysis Fighting the pollinators decline in practice – Farmers’ willingness to accept an eco-scheme for their conservation in Aragon, Spain Potential decarbonization for balancing local and non-local perishable food supply in megacities Microbial fermentation in co-ensiling forage-grain ratoon rice and maize to improve feed quality and enhance the sustainability of rice-based production systems Recent advancements in prospective life cycle assessment: Current practices, trends, and implications for future research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1