Aneta Petrušková, Debarpan Guhathakurta, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Eva-Maria Weiss, Tomáš Páleníček, Anna Fejtová
{"title":"羟色胺能迷幻剂快速调节培养皮层神经元中诱发的谷氨酸释放","authors":"Aneta Petrušková, Debarpan Guhathakurta, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Eva-Maria Weiss, Tomáš Páleníček, Anna Fejtová","doi":"10.1111/jnc.70020","DOIUrl":null,"url":null,"abstract":"<p>The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3–30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70020","citationCount":"0","resultStr":"{\"title\":\"Serotonergic Psychedelics Rapidly Modulate Evoked Glutamate Release in Cultured Cortical Neurons\",\"authors\":\"Aneta Petrušková, Debarpan Guhathakurta, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Eva-Maria Weiss, Tomáš Páleníček, Anna Fejtová\",\"doi\":\"10.1111/jnc.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3–30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70020\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70020","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3–30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.