纳米脂质体显示稳定的疟疾蛋白抗原可节省 50 倍佐剂和 20 倍抗原疫苗剂量

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-01 DOI:10.1021/acsnano.4c16865
Yiting Song, Wei-Chiao Huang, Danton Ivanochko, Carole Long, Qinzhe Li, Luwen Zhou, Jean-Philippe Julien, Kazutoyo Miura, Jonathan F. Lovell
{"title":"纳米脂质体显示稳定的疟疾蛋白抗原可节省 50 倍佐剂和 20 倍抗原疫苗剂量","authors":"Yiting Song, Wei-Chiao Huang, Danton Ivanochko, Carole Long, Qinzhe Li, Luwen Zhou, Jean-Philippe Julien, Kazutoyo Miura, Jonathan F. Lovell","doi":"10.1021/acsnano.4c16865","DOIUrl":null,"url":null,"abstract":"Displaying soluble vaccine protein antigens onto the surface of adjuvanted nanoliposomes can enhance the magnitude of elicited antibody responses. In this study, we examine this approach with respect to dose sparing, for not only the antigen component but also the adjuvant dose in the vaccine. Using a structurally stabilized Pfs48/45 derived malarial protein as a model antigen, we confirmed the protein rapidly displayed on the surface of immunogenic liposomes containing cobalt porphyrin phospholipid (CoPoP; for antigen display via His-tag interaction) along with the immunostimulatory adjuvants monophosphoryl lipid A (MPLA) and QS-21. Mice were immunized with a fixed protein antigen dose with varying adjuvant doses to estimate the extent of adjuvant sparing. In mice vaccinated at a fixed protein antigen dose, liposome-bound Pfs48/45 achieved superior antibody IgG titers compared to the soluble (nonbound) form at all assessed adjuvant doses, reflecting MPLA and QS-21 adjuvant dose sparing of at least 50-fold. The primary driver of adjuvant sparing in these conditions was presentation of the antigen in a nanoparticle format, and potent responses were achieved even without co-delivery of antigen and adjuvant within the same particle, provided that adjuvant and liposome-displayed antigen were co-administered to the same injection site. By keeping the adjuvant dose fixed and varying the antigen dose in a comparable experimental design, ∼20-fold antigen dose sparing was observed with liposome display. This case study illustrates the potential of antigen-display nanotechnologies, such as CoPoP nanoliposomes, to achieve substantial adjuvant and antigen dose sparing, which could theoretically facilitate the deployment of future vaccines.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"50-Fold Adjuvant and 20-Fold Antigen Vaccine Dose Sparing from Nanoliposome Display of a Stabilized Malarial Protein Antigen\",\"authors\":\"Yiting Song, Wei-Chiao Huang, Danton Ivanochko, Carole Long, Qinzhe Li, Luwen Zhou, Jean-Philippe Julien, Kazutoyo Miura, Jonathan F. Lovell\",\"doi\":\"10.1021/acsnano.4c16865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Displaying soluble vaccine protein antigens onto the surface of adjuvanted nanoliposomes can enhance the magnitude of elicited antibody responses. In this study, we examine this approach with respect to dose sparing, for not only the antigen component but also the adjuvant dose in the vaccine. Using a structurally stabilized Pfs48/45 derived malarial protein as a model antigen, we confirmed the protein rapidly displayed on the surface of immunogenic liposomes containing cobalt porphyrin phospholipid (CoPoP; for antigen display via His-tag interaction) along with the immunostimulatory adjuvants monophosphoryl lipid A (MPLA) and QS-21. Mice were immunized with a fixed protein antigen dose with varying adjuvant doses to estimate the extent of adjuvant sparing. In mice vaccinated at a fixed protein antigen dose, liposome-bound Pfs48/45 achieved superior antibody IgG titers compared to the soluble (nonbound) form at all assessed adjuvant doses, reflecting MPLA and QS-21 adjuvant dose sparing of at least 50-fold. The primary driver of adjuvant sparing in these conditions was presentation of the antigen in a nanoparticle format, and potent responses were achieved even without co-delivery of antigen and adjuvant within the same particle, provided that adjuvant and liposome-displayed antigen were co-administered to the same injection site. By keeping the adjuvant dose fixed and varying the antigen dose in a comparable experimental design, ∼20-fold antigen dose sparing was observed with liposome display. This case study illustrates the potential of antigen-display nanotechnologies, such as CoPoP nanoliposomes, to achieve substantial adjuvant and antigen dose sparing, which could theoretically facilitate the deployment of future vaccines.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16865\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
50-Fold Adjuvant and 20-Fold Antigen Vaccine Dose Sparing from Nanoliposome Display of a Stabilized Malarial Protein Antigen
Displaying soluble vaccine protein antigens onto the surface of adjuvanted nanoliposomes can enhance the magnitude of elicited antibody responses. In this study, we examine this approach with respect to dose sparing, for not only the antigen component but also the adjuvant dose in the vaccine. Using a structurally stabilized Pfs48/45 derived malarial protein as a model antigen, we confirmed the protein rapidly displayed on the surface of immunogenic liposomes containing cobalt porphyrin phospholipid (CoPoP; for antigen display via His-tag interaction) along with the immunostimulatory adjuvants monophosphoryl lipid A (MPLA) and QS-21. Mice were immunized with a fixed protein antigen dose with varying adjuvant doses to estimate the extent of adjuvant sparing. In mice vaccinated at a fixed protein antigen dose, liposome-bound Pfs48/45 achieved superior antibody IgG titers compared to the soluble (nonbound) form at all assessed adjuvant doses, reflecting MPLA and QS-21 adjuvant dose sparing of at least 50-fold. The primary driver of adjuvant sparing in these conditions was presentation of the antigen in a nanoparticle format, and potent responses were achieved even without co-delivery of antigen and adjuvant within the same particle, provided that adjuvant and liposome-displayed antigen were co-administered to the same injection site. By keeping the adjuvant dose fixed and varying the antigen dose in a comparable experimental design, ∼20-fold antigen dose sparing was observed with liposome display. This case study illustrates the potential of antigen-display nanotechnologies, such as CoPoP nanoliposomes, to achieve substantial adjuvant and antigen dose sparing, which could theoretically facilitate the deployment of future vaccines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1