Qichen Xu, Zhuanglin Shen, Alexander Edström, I. P. Miranda, Zhiwei Lu, Anders Bergman, Danny Thonig, Wanjian Yin, Olle Eriksson, Anna Delin
{"title":"通过受控装配设计二维天磁超材料","authors":"Qichen Xu, Zhuanglin Shen, Alexander Edström, I. P. Miranda, Zhiwei Lu, Anders Bergman, Danny Thonig, Wanjian Yin, Olle Eriksson, Anna Delin","doi":"10.1038/s41524-025-01534-4","DOIUrl":null,"url":null,"abstract":"<p>Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.e., long-lived, due to a self-stabilization mechanism. This makes these new textures promising for applications. Central to our approach is the concept of ’simulated controlled assembly’, in short, a protocol inspired by ’click chemistry’ that allows for positioning topological magnetic structures where one likes, and then allowing for energy minimization to elucidate the stability. Utilizing high-throughput atomistic-spin-dynamic simulations alongside state-of-the-art AI-driven tools, we have isolated skyrmions (topological charge <i>Q</i> = 1), antiskyrmions (<i>Q</i> = − 1), and skyrmionium (<i>Q</i> = 0). These entities serve as foundational ’skyrmionic building blocks’ to form the here-reported intricate textures. In this work, two key contributions are introduced to the field of skyrmionic systems. First, we present a novel combination of atomistic spin dynamics simulations and controlled assembly protocols for the stabilization and investigation of new topological magnets. Second, using the aforementioned methods we report on the discovery of skyrmionic metamaterials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"189 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of 2D skyrmionic metamaterials through controlled assembly\",\"authors\":\"Qichen Xu, Zhuanglin Shen, Alexander Edström, I. P. Miranda, Zhiwei Lu, Anders Bergman, Danny Thonig, Wanjian Yin, Olle Eriksson, Anna Delin\",\"doi\":\"10.1038/s41524-025-01534-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.e., long-lived, due to a self-stabilization mechanism. This makes these new textures promising for applications. Central to our approach is the concept of ’simulated controlled assembly’, in short, a protocol inspired by ’click chemistry’ that allows for positioning topological magnetic structures where one likes, and then allowing for energy minimization to elucidate the stability. Utilizing high-throughput atomistic-spin-dynamic simulations alongside state-of-the-art AI-driven tools, we have isolated skyrmions (topological charge <i>Q</i> = 1), antiskyrmions (<i>Q</i> = − 1), and skyrmionium (<i>Q</i> = 0). These entities serve as foundational ’skyrmionic building blocks’ to form the here-reported intricate textures. In this work, two key contributions are introduced to the field of skyrmionic systems. First, we present a novel combination of atomistic spin dynamics simulations and controlled assembly protocols for the stabilization and investigation of new topological magnets. Second, using the aforementioned methods we report on the discovery of skyrmionic metamaterials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01534-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01534-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design of 2D skyrmionic metamaterials through controlled assembly
Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.e., long-lived, due to a self-stabilization mechanism. This makes these new textures promising for applications. Central to our approach is the concept of ’simulated controlled assembly’, in short, a protocol inspired by ’click chemistry’ that allows for positioning topological magnetic structures where one likes, and then allowing for energy minimization to elucidate the stability. Utilizing high-throughput atomistic-spin-dynamic simulations alongside state-of-the-art AI-driven tools, we have isolated skyrmions (topological charge Q = 1), antiskyrmions (Q = − 1), and skyrmionium (Q = 0). These entities serve as foundational ’skyrmionic building blocks’ to form the here-reported intricate textures. In this work, two key contributions are introduced to the field of skyrmionic systems. First, we present a novel combination of atomistic spin dynamics simulations and controlled assembly protocols for the stabilization and investigation of new topological magnets. Second, using the aforementioned methods we report on the discovery of skyrmionic metamaterials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.