用于控制采后水果真菌病害的苯基丙酮。

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-02-28 DOI:10.1007/s11103-025-01568-8
Yijie Sun, Xiaohan Wang, Zhengyu Huang, Xiaoyang Zhao, Linxiang Qiao, Caie Wu, Zhaohui Xue, Xiaohong Kou
{"title":"用于控制采后水果真菌病害的苯基丙酮。","authors":"Yijie Sun, Xiaohan Wang, Zhengyu Huang, Xiaoyang Zhao, Linxiang Qiao, Caie Wu, Zhaohui Xue, Xiaohong Kou","doi":"10.1007/s11103-025-01568-8","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been a growing interest in developing greener and safer substances for the control of postharvest fungal diseases of fruit. Secondary metabolic pathways play an important role in plant defense responses, and the phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plant defense. More and more studies have shown that exogenous phenylpropanoids treatments can inhibit postharvest fungal diseases. On the one hand, these biologically active phenylpropanoids are fungistatic and can act directly on the fungal cells infesting the postharvest fruit to inhibit spore germination and mycelial growth. On the other hand, phenylpropanoids treatment can improve plant resistance. In this review, we summarize recent achievements in the mechanisms and applications of phenylpropanoids, including cinnamic acid, p-coumaric acid and esters, caffeic acid, ferulic acid, and chlorogenic acid, in the inhibition of fungal pathogens and the reduction of postharvest losses. In addition, we propose further research hotspots and development directions based on combining nanomaterials and biotechnology.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"39"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenylpropanoids for the control of fungal diseases of postharvest fruit.\",\"authors\":\"Yijie Sun, Xiaohan Wang, Zhengyu Huang, Xiaoyang Zhao, Linxiang Qiao, Caie Wu, Zhaohui Xue, Xiaohong Kou\",\"doi\":\"10.1007/s11103-025-01568-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, there has been a growing interest in developing greener and safer substances for the control of postharvest fungal diseases of fruit. Secondary metabolic pathways play an important role in plant defense responses, and the phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plant defense. More and more studies have shown that exogenous phenylpropanoids treatments can inhibit postharvest fungal diseases. On the one hand, these biologically active phenylpropanoids are fungistatic and can act directly on the fungal cells infesting the postharvest fruit to inhibit spore germination and mycelial growth. On the other hand, phenylpropanoids treatment can improve plant resistance. In this review, we summarize recent achievements in the mechanisms and applications of phenylpropanoids, including cinnamic acid, p-coumaric acid and esters, caffeic acid, ferulic acid, and chlorogenic acid, in the inhibition of fungal pathogens and the reduction of postharvest losses. In addition, we propose further research hotspots and development directions based on combining nanomaterials and biotechnology.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 2\",\"pages\":\"39\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01568-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01568-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phenylpropanoids for the control of fungal diseases of postharvest fruit.

In recent years, there has been a growing interest in developing greener and safer substances for the control of postharvest fungal diseases of fruit. Secondary metabolic pathways play an important role in plant defense responses, and the phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plant defense. More and more studies have shown that exogenous phenylpropanoids treatments can inhibit postharvest fungal diseases. On the one hand, these biologically active phenylpropanoids are fungistatic and can act directly on the fungal cells infesting the postharvest fruit to inhibit spore germination and mycelial growth. On the other hand, phenylpropanoids treatment can improve plant resistance. In this review, we summarize recent achievements in the mechanisms and applications of phenylpropanoids, including cinnamic acid, p-coumaric acid and esters, caffeic acid, ferulic acid, and chlorogenic acid, in the inhibition of fungal pathogens and the reduction of postharvest losses. In addition, we propose further research hotspots and development directions based on combining nanomaterials and biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
The Arabidopsis F-box protein FBS associated with the helix-loop-helix transcription factor FAMA involved in stomatal immunity. Chemical application improves stress resilience in plants. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. A glycogen synthase kinase-3 gene enhances grain yield heterosis in semi-dwarf rapeseed. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1