{"title":"Inhibition of the MLL1-WDR5 interaction modulates epithelial to mesenchymal transition and metabolic pathways in triple-negative breast cancer cells","authors":"Shilpi Sarkar , Thirukumaran Kandasamy , Siddhartha Sankar Ghosh","doi":"10.1016/j.bbrc.2025.151559","DOIUrl":null,"url":null,"abstract":"<div><div>Histone methylation is a key epigenetic modulation that regulates gene expression and is often associated with the pathogenesis of various cancers, including triple-negative breast cancer (TNBC). Histone methyltransferase, MLL1-WDR5 complex regulates gene transcription by catalyzing trimethylation of lysine 4 on histone H3 (H3K4me3) and promotes carcinogenesis. Herein, epithelial-to-mesenchymal transition (EMT) in TNBC cells is shown to facilitate upregulation of MLL1 and WDR5 expression by 4.7-fold and 3.84-fold, thereby establishing the association of these proteins in EMT dynamics. Therefore, we explored the therapeutic potential of inhibiting MLL1-WDR5 interaction using the small molecule inhibitor MM-102 in TNBC cell lines. MLL1 inhibition significantly reduced H3K4me3 levels and enhanced the apoptotic population by 30 % in MDA-MB-468 cells, demonstrating its cytotoxic potential. Notably, MM-102 treatment reverses the EMT process by upregulating the expression of epithelial markers (such as E-cadherin and claudin) and downregulating the expression of mesenchymal markers (such as β-catenin, Slug, caveolin 1, and fibronectin). In addition, MLL1 inhibition caused a metabolic shift, with a 5-fold increase in ALDO A and a 4-fold increase in ENO1 expression, indicating enhanced glycolysis. Further reduction in the fatty acid uptake and lipid droplet accumulation by MM-102 treatment signifies that targeting MLL1 also rewires the metabolic network in TNBC cells. Collectively, inhibiting MLL1 represents a promising therapeutic strategy for managing EMT-driven metastasis, reshaping metabolic reprogramming, and ultimately improving therapeutic outcomes in aggressive breast cancer.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"755 ","pages":"Article 151559"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002736","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibition of the MLL1-WDR5 interaction modulates epithelial to mesenchymal transition and metabolic pathways in triple-negative breast cancer cells
Histone methylation is a key epigenetic modulation that regulates gene expression and is often associated with the pathogenesis of various cancers, including triple-negative breast cancer (TNBC). Histone methyltransferase, MLL1-WDR5 complex regulates gene transcription by catalyzing trimethylation of lysine 4 on histone H3 (H3K4me3) and promotes carcinogenesis. Herein, epithelial-to-mesenchymal transition (EMT) in TNBC cells is shown to facilitate upregulation of MLL1 and WDR5 expression by 4.7-fold and 3.84-fold, thereby establishing the association of these proteins in EMT dynamics. Therefore, we explored the therapeutic potential of inhibiting MLL1-WDR5 interaction using the small molecule inhibitor MM-102 in TNBC cell lines. MLL1 inhibition significantly reduced H3K4me3 levels and enhanced the apoptotic population by 30 % in MDA-MB-468 cells, demonstrating its cytotoxic potential. Notably, MM-102 treatment reverses the EMT process by upregulating the expression of epithelial markers (such as E-cadherin and claudin) and downregulating the expression of mesenchymal markers (such as β-catenin, Slug, caveolin 1, and fibronectin). In addition, MLL1 inhibition caused a metabolic shift, with a 5-fold increase in ALDO A and a 4-fold increase in ENO1 expression, indicating enhanced glycolysis. Further reduction in the fatty acid uptake and lipid droplet accumulation by MM-102 treatment signifies that targeting MLL1 also rewires the metabolic network in TNBC cells. Collectively, inhibiting MLL1 represents a promising therapeutic strategy for managing EMT-driven metastasis, reshaping metabolic reprogramming, and ultimately improving therapeutic outcomes in aggressive breast cancer.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics