直接观察双金属纳米粒子中容纳氢气吸收的相变

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-05 DOI:10.1021/acsnano.4c18013
Lívia P. Matte, Maximilian Jaugstetter, Alisson S. Thill, Tara P. Mishra, Carlos Escudero, Giuseppina Conti, Fernanda Poletto, Slavomir Nemsak, Fabiano Bernardi
{"title":"直接观察双金属纳米粒子中容纳氢气吸收的相变","authors":"Lívia P. Matte, Maximilian Jaugstetter, Alisson S. Thill, Tara P. Mishra, Carlos Escudero, Giuseppina Conti, Fernanda Poletto, Slavomir Nemsak, Fabiano Bernardi","doi":"10.1021/acsnano.4c18013","DOIUrl":null,"url":null,"abstract":"Hydrogen holds great promise as a cleaner alternative to fossil fuels, but its efficient and affordable storage remains a significant challenge. Bimetallic systems, such as Pd and Ni, present a promising option for storing hydrogen. In this study, using the combination of different cutting-edge X-ray and electron techniques, we observed the transformations of Pd–Ni nanoparticles, which initially consist of a NiO-rich shell surrounding a Pd-rich core but undergo a major transformation when they interact with hydrogen. During hydrogen exposure, the Pd core breaks into smaller pockets, dramatically increasing its surface area and enhancing the hydrogen storage capacity, especially in nanoparticles with lower Pd content. The findings provide a deep understanding of the morphological changes at the atomic level during hydrogen storage and contribute to designing cost-effective hydrogen storage using multimetallic systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"36 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles\",\"authors\":\"Lívia P. Matte, Maximilian Jaugstetter, Alisson S. Thill, Tara P. Mishra, Carlos Escudero, Giuseppina Conti, Fernanda Poletto, Slavomir Nemsak, Fabiano Bernardi\",\"doi\":\"10.1021/acsnano.4c18013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen holds great promise as a cleaner alternative to fossil fuels, but its efficient and affordable storage remains a significant challenge. Bimetallic systems, such as Pd and Ni, present a promising option for storing hydrogen. In this study, using the combination of different cutting-edge X-ray and electron techniques, we observed the transformations of Pd–Ni nanoparticles, which initially consist of a NiO-rich shell surrounding a Pd-rich core but undergo a major transformation when they interact with hydrogen. During hydrogen exposure, the Pd core breaks into smaller pockets, dramatically increasing its surface area and enhancing the hydrogen storage capacity, especially in nanoparticles with lower Pd content. The findings provide a deep understanding of the morphological changes at the atomic level during hydrogen storage and contribute to designing cost-effective hydrogen storage using multimetallic systems.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
Hydrogen holds great promise as a cleaner alternative to fossil fuels, but its efficient and affordable storage remains a significant challenge. Bimetallic systems, such as Pd and Ni, present a promising option for storing hydrogen. In this study, using the combination of different cutting-edge X-ray and electron techniques, we observed the transformations of Pd–Ni nanoparticles, which initially consist of a NiO-rich shell surrounding a Pd-rich core but undergo a major transformation when they interact with hydrogen. During hydrogen exposure, the Pd core breaks into smaller pockets, dramatically increasing its surface area and enhancing the hydrogen storage capacity, especially in nanoparticles with lower Pd content. The findings provide a deep understanding of the morphological changes at the atomic level during hydrogen storage and contribute to designing cost-effective hydrogen storage using multimetallic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1