镁促进 Cu/ZnO/ZrO2/Al2O3-MgO 催化剂在二氧化碳加氢制甲醇过程中的催化稳定性

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-03-05 DOI:10.1021/acs.iecr.4c04518
Seong-rye Kim, Ye-Na Choi, Kwangho Park, Hong-Gyung Lee, Kyung Rok Lee, Hongjin Park, Sungho Yoon, Kwan Young Lee, Kwang-Deog Jung
{"title":"镁促进 Cu/ZnO/ZrO2/Al2O3-MgO 催化剂在二氧化碳加氢制甲醇过程中的催化稳定性","authors":"Seong-rye Kim, Ye-Na Choi, Kwangho Park, Hong-Gyung Lee, Kyung Rok Lee, Hongjin Park, Sungho Yoon, Kwan Young Lee, Kwang-Deog Jung","doi":"10.1021/acs.iecr.4c04518","DOIUrl":null,"url":null,"abstract":"A Mg-promoted Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst (CZZAM) was developed for methanol synthesis via CO<sub>2</sub> hydrogenation. Incorporating magnesium into the catalyst precursor improved the durability, addressing stability issues in our previously reported Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> (CZZA) catalysts. Comparative evaluations showed that CZZAM outperforms commercial Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> (CZA) and CZZA catalysts, achieving a maximum methanol space–time yield of 0.99 g<sub>MeOH</sub>·g<sub>cat</sub><sup>–1</sup>·h<sup>–1</sup> with a methanol selectivity of 50.6% and a yield of 12.7% under 24,000 mL·g<sub>cat</sub><sup>–1</sup>·h<sup>–1</sup> at 260 °C and 5 MPa. In a 60 h test, CZZAM exhibited only a 2.8% decrease in methanol productivity compared to over 9 to 10% declines for CZA and CZZA. Characterizations revealed that Mg addition enhanced Cu nanoparticle dispersion and structural stability. These findings demonstrate that Mg incorporation effectively enhances activity and stability in Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts for CO<sub>2</sub> hydrogenation to methanol.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"30 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium-Promoted Catalytic Stability of the Cu/ZnO/ZrO2/Al2O3-MgO Catalyst in CO2 Hydrogenation to Methanol\",\"authors\":\"Seong-rye Kim, Ye-Na Choi, Kwangho Park, Hong-Gyung Lee, Kyung Rok Lee, Hongjin Park, Sungho Yoon, Kwan Young Lee, Kwang-Deog Jung\",\"doi\":\"10.1021/acs.iecr.4c04518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Mg-promoted Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst (CZZAM) was developed for methanol synthesis via CO<sub>2</sub> hydrogenation. Incorporating magnesium into the catalyst precursor improved the durability, addressing stability issues in our previously reported Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> (CZZA) catalysts. Comparative evaluations showed that CZZAM outperforms commercial Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> (CZA) and CZZA catalysts, achieving a maximum methanol space–time yield of 0.99 g<sub>MeOH</sub>·g<sub>cat</sub><sup>–1</sup>·h<sup>–1</sup> with a methanol selectivity of 50.6% and a yield of 12.7% under 24,000 mL·g<sub>cat</sub><sup>–1</sup>·h<sup>–1</sup> at 260 °C and 5 MPa. In a 60 h test, CZZAM exhibited only a 2.8% decrease in methanol productivity compared to over 9 to 10% declines for CZA and CZZA. Characterizations revealed that Mg addition enhanced Cu nanoparticle dispersion and structural stability. These findings demonstrate that Mg incorporation effectively enhances activity and stability in Cu/ZnO/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> catalysts for CO<sub>2</sub> hydrogenation to methanol.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04518\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnesium-Promoted Catalytic Stability of the Cu/ZnO/ZrO2/Al2O3-MgO Catalyst in CO2 Hydrogenation to Methanol
A Mg-promoted Cu/ZnO/ZrO2/Al2O3 catalyst (CZZAM) was developed for methanol synthesis via CO2 hydrogenation. Incorporating magnesium into the catalyst precursor improved the durability, addressing stability issues in our previously reported Cu/ZnO/ZrO2/Al2O3 (CZZA) catalysts. Comparative evaluations showed that CZZAM outperforms commercial Cu/ZnO/Al2O3 (CZA) and CZZA catalysts, achieving a maximum methanol space–time yield of 0.99 gMeOH·gcat–1·h–1 with a methanol selectivity of 50.6% and a yield of 12.7% under 24,000 mL·gcat–1·h–1 at 260 °C and 5 MPa. In a 60 h test, CZZAM exhibited only a 2.8% decrease in methanol productivity compared to over 9 to 10% declines for CZA and CZZA. Characterizations revealed that Mg addition enhanced Cu nanoparticle dispersion and structural stability. These findings demonstrate that Mg incorporation effectively enhances activity and stability in Cu/ZnO/ZrO2/Al2O3 catalysts for CO2 hydrogenation to methanol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Metallic Nickel Hollow Fiber Membrane Reactors to Convert Methane and Carbon Dioxide for Hydrogen and Syngas Production via Dry Reforming Preparation of the ECTFE/SiO2 Hybrid Membrane and Its Application in Membrane Condensation Mechanistic Exploration and Kinetic Modeling Through In Silico Data Generation and Probabilistic Machine Learning Analysis Balancing the Hydrophilic and Hydrophobic Moieties on Carbon Dots to Act as an Efficient Particle Surfactant Two-Dimensional Covalent Organic Framework Membranes for Molecular and Ion Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1