Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu
{"title":"基于质体系统组学和形态学证据的干翅目科修订分类,并描述新属 Pseudarachniodes。","authors":"Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu","doi":"10.1016/j.pld.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p><p>Dryopteridaceae are the largest fern family and include nearly 20% of extant fern diversity, with 24 currently recognized genera. Recognition and delineation of genera within this family have varied greatly. The three-subfamily classification of Dryopteridaceae was based primarily on molecular phylogenetic relationships but lacked morphological evidence, and the phylogenetic relationships of the subfamilies and genera of Dryopteridaceae are only partially resolved. A comprehensive and robust phylogeny is urgently needed. The heterogeneous morphology of the current members of Dryopteridaceae makes the family and its subfamilies difficult to define by single morphological characteristics or even character combinations. We carried out phylogenetic analyses to reconstruct a highly supported phylogeny of Dryopteridaceae. Our analyses recovered 24 strongly supported clades grouped into seven major clades of Dryopteridaceae. Seven morphological characters including habit, rhizome shape, frond morphology, rachis-costae architecture, appendages on stipe base and lamina, and soral arrangement were found to be informative for identifying different major clades and clades in Dryopteridaceae. Based on phylogenetic reconstruction and morphological analysis, we presented an updated infra-familial classification of Dryopteridaceae with seven subfamilies and 24 genera including four newly proposed subfamilies (Ctenitidoideae, Lastreopsidoideae, Pleocnemioideae, and Polystichopsidoideae). Morphological character combinations of each subfamily are summarized, and a key is provided. Most genera sensu PPG I are recognized, with <i>Stigmatopetris</i> reclassified into Dryopteridoideae and <i>Arthrobotrya</i> considered a synonym of <i>Teratophyllum</i>. A new genus <i>Pseudarachniodes</i> is introduced. This revised classification will serve as a foundational framework for future investigations on taxonomy, biogeography, and diversification of the most species-rich Dryopteridaceae in ferns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"34-52"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873575/pdf/","citationCount":"0","resultStr":"{\"title\":\"A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, <i>Pseudarachniodes</i>.\",\"authors\":\"Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu\",\"doi\":\"10.1016/j.pld.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dryopteridaceae are the largest fern family and include nearly 20% of extant fern diversity, with 24 currently recognized genera. Recognition and delineation of genera within this family have varied greatly. The three-subfamily classification of Dryopteridaceae was based primarily on molecular phylogenetic relationships but lacked morphological evidence, and the phylogenetic relationships of the subfamilies and genera of Dryopteridaceae are only partially resolved. A comprehensive and robust phylogeny is urgently needed. The heterogeneous morphology of the current members of Dryopteridaceae makes the family and its subfamilies difficult to define by single morphological characteristics or even character combinations. We carried out phylogenetic analyses to reconstruct a highly supported phylogeny of Dryopteridaceae. Our analyses recovered 24 strongly supported clades grouped into seven major clades of Dryopteridaceae. Seven morphological characters including habit, rhizome shape, frond morphology, rachis-costae architecture, appendages on stipe base and lamina, and soral arrangement were found to be informative for identifying different major clades and clades in Dryopteridaceae. Based on phylogenetic reconstruction and morphological analysis, we presented an updated infra-familial classification of Dryopteridaceae with seven subfamilies and 24 genera including four newly proposed subfamilies (Ctenitidoideae, Lastreopsidoideae, Pleocnemioideae, and Polystichopsidoideae). Morphological character combinations of each subfamily are summarized, and a key is provided. Most genera sensu PPG I are recognized, with <i>Stigmatopetris</i> reclassified into Dryopteridoideae and <i>Arthrobotrya</i> considered a synonym of <i>Teratophyllum</i>. A new genus <i>Pseudarachniodes</i> is introduced. This revised classification will serve as a foundational framework for future investigations on taxonomy, biogeography, and diversification of the most species-rich Dryopteridaceae in ferns.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"47 1\",\"pages\":\"34-52\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2024.07.010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.07.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, Pseudarachniodes.
Dryopteridaceae are the largest fern family and include nearly 20% of extant fern diversity, with 24 currently recognized genera. Recognition and delineation of genera within this family have varied greatly. The three-subfamily classification of Dryopteridaceae was based primarily on molecular phylogenetic relationships but lacked morphological evidence, and the phylogenetic relationships of the subfamilies and genera of Dryopteridaceae are only partially resolved. A comprehensive and robust phylogeny is urgently needed. The heterogeneous morphology of the current members of Dryopteridaceae makes the family and its subfamilies difficult to define by single morphological characteristics or even character combinations. We carried out phylogenetic analyses to reconstruct a highly supported phylogeny of Dryopteridaceae. Our analyses recovered 24 strongly supported clades grouped into seven major clades of Dryopteridaceae. Seven morphological characters including habit, rhizome shape, frond morphology, rachis-costae architecture, appendages on stipe base and lamina, and soral arrangement were found to be informative for identifying different major clades and clades in Dryopteridaceae. Based on phylogenetic reconstruction and morphological analysis, we presented an updated infra-familial classification of Dryopteridaceae with seven subfamilies and 24 genera including four newly proposed subfamilies (Ctenitidoideae, Lastreopsidoideae, Pleocnemioideae, and Polystichopsidoideae). Morphological character combinations of each subfamily are summarized, and a key is provided. Most genera sensu PPG I are recognized, with Stigmatopetris reclassified into Dryopteridoideae and Arthrobotrya considered a synonym of Teratophyllum. A new genus Pseudarachniodes is introduced. This revised classification will serve as a foundational framework for future investigations on taxonomy, biogeography, and diversification of the most species-rich Dryopteridaceae in ferns.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry