浓度和激发波长对 CuInS2 QD 荧光行为的影响

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2025-03-03 DOI:10.1016/j.solidstatesciences.2025.107886
Priya Chandra, K.S. Ojha
{"title":"浓度和激发波长对 CuInS2 QD 荧光行为的影响","authors":"Priya Chandra,&nbsp;K.S. Ojha","doi":"10.1016/j.solidstatesciences.2025.107886","DOIUrl":null,"url":null,"abstract":"<div><div>Copper indium sulfide (CuInS<sub>2</sub>) ternary quantum dots (QDs) offer tunable optical properties for displays, efficient solar cells, and advanced biomedical imaging. In this work, CuInS<sub>2</sub> QDs are prepared via a one-pot solvothermal route. The XRD has been performed for structural information, revealing the chalcopyrite structure of CuInS<sub>2</sub> with an average crystalline size of 8 nm, consistent with particle size calculated by the HRTEM image. The functional group analysis confirms the formation of CuInS<sub>2</sub> QDs. A blue shift in the energy gap of the prepared QDs has been found compared to the bulk. A narrow emission peak lying at 610 nm has been observed, showing Stoke's shift of 130 nm. The fluorescence behaviour of synthesized QDs with excitation wavelength and concentration has been investigated.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"163 ","pages":"Article 107886"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of concentration and excitation wavelength on fluorescence behaviour of CuInS2 QDs\",\"authors\":\"Priya Chandra,&nbsp;K.S. Ojha\",\"doi\":\"10.1016/j.solidstatesciences.2025.107886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper indium sulfide (CuInS<sub>2</sub>) ternary quantum dots (QDs) offer tunable optical properties for displays, efficient solar cells, and advanced biomedical imaging. In this work, CuInS<sub>2</sub> QDs are prepared via a one-pot solvothermal route. The XRD has been performed for structural information, revealing the chalcopyrite structure of CuInS<sub>2</sub> with an average crystalline size of 8 nm, consistent with particle size calculated by the HRTEM image. The functional group analysis confirms the formation of CuInS<sub>2</sub> QDs. A blue shift in the energy gap of the prepared QDs has been found compared to the bulk. A narrow emission peak lying at 610 nm has been observed, showing Stoke's shift of 130 nm. The fluorescence behaviour of synthesized QDs with excitation wavelength and concentration has been investigated.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"163 \",\"pages\":\"Article 107886\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255825000640\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000640","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of concentration and excitation wavelength on fluorescence behaviour of CuInS2 QDs
Copper indium sulfide (CuInS2) ternary quantum dots (QDs) offer tunable optical properties for displays, efficient solar cells, and advanced biomedical imaging. In this work, CuInS2 QDs are prepared via a one-pot solvothermal route. The XRD has been performed for structural information, revealing the chalcopyrite structure of CuInS2 with an average crystalline size of 8 nm, consistent with particle size calculated by the HRTEM image. The functional group analysis confirms the formation of CuInS2 QDs. A blue shift in the energy gap of the prepared QDs has been found compared to the bulk. A narrow emission peak lying at 610 nm has been observed, showing Stoke's shift of 130 nm. The fluorescence behaviour of synthesized QDs with excitation wavelength and concentration has been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Synthesis and characterization of P-doped g-C3N4/CuBi2O4 as a new heterogeneous nanocomposite for photocatalytic reduction of nitroaromatic compounds Insights on the electrooxidation of formaldehyde over bimetallic Co2V2O7 nanorod and its implication towards water electrolysis Thermoelectric properties of Zn/Sc codoped GeTe prepared by melt-spinning method Anchoring of liquid crystal molecules on multi-walled carbon nanotubes and their effects on enhanced photoluminescence dynamics, fluorescence decay and distinctive electrical properties Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1