Heng-Chao Yu, Lu Bai, Liang Jin, Yu-Jia Zhang, Zi-Han Xi, De-Sheng Wang
{"title":"SLC25A35 通过上调 PGC-1α 促进脂肪酸氧化和线粒体生物生成,从而促进肝细胞癌的发生和发展。","authors":"Heng-Chao Yu, Lu Bai, Liang Jin, Yu-Jia Zhang, Zi-Han Xi, De-Sheng Wang","doi":"10.1186/s12964-025-02109-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria dysfunction has been closely linked to a wide spectrum of human cancers, whereas the molecular basis has yet to be fully understood. SLC25A35 belongs to the SLC25 family of mitochondrial carrier proteins. However, the role of SLC25A35 in mitochondrial metabolism reprogramming, development and progression in human cancers remains unclear. Here, we found that SLC25A35 markedly reprogramed mitochondrial metabolism, characterized by increased oxygen consumption rate and ATP production and decreased ROS level, via enhancing fatty acid oxidation (FAO). Meanwhile, SLC25A35 also enhanced mitochondrial biogenesis characterized by increased mitochondrial mass and DNA content. Mechanistic studies revealed that SLC25A35 facilitated FAO and mitochondrial biogenesis through upregulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) via increasing acetyl-CoA-mediated acetylation of PGC-1α. Clinically, SLC25A35 was highly expressed in HCC and correlated with adverse patients' survival. Functionally, SLC25A35 promoted the proliferation and metastasis of HCC cells both in vitro and in vivo, as well as the carcinogenesis in a DEN-induced HCC mice model. Moreover, we found that SLC25A35 upregulation is caused, at least in part, by decreased miR-663a in HCC cells. Together, our results suggest a crucial oncogenic role of SLC25A35 in HCC by reprogramming mitochondrial metabolism and suggest SLC25A35 as a potential therapeutic target for the treatment of HCC.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"130"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895242/pdf/","citationCount":"0","resultStr":"{\"title\":\"SLC25A35 enhances fatty acid oxidation and mitochondrial biogenesis to promote the carcinogenesis and progression of hepatocellular carcinoma by upregulating PGC-1α.\",\"authors\":\"Heng-Chao Yu, Lu Bai, Liang Jin, Yu-Jia Zhang, Zi-Han Xi, De-Sheng Wang\",\"doi\":\"10.1186/s12964-025-02109-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria dysfunction has been closely linked to a wide spectrum of human cancers, whereas the molecular basis has yet to be fully understood. SLC25A35 belongs to the SLC25 family of mitochondrial carrier proteins. However, the role of SLC25A35 in mitochondrial metabolism reprogramming, development and progression in human cancers remains unclear. Here, we found that SLC25A35 markedly reprogramed mitochondrial metabolism, characterized by increased oxygen consumption rate and ATP production and decreased ROS level, via enhancing fatty acid oxidation (FAO). Meanwhile, SLC25A35 also enhanced mitochondrial biogenesis characterized by increased mitochondrial mass and DNA content. Mechanistic studies revealed that SLC25A35 facilitated FAO and mitochondrial biogenesis through upregulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) via increasing acetyl-CoA-mediated acetylation of PGC-1α. Clinically, SLC25A35 was highly expressed in HCC and correlated with adverse patients' survival. Functionally, SLC25A35 promoted the proliferation and metastasis of HCC cells both in vitro and in vivo, as well as the carcinogenesis in a DEN-induced HCC mice model. Moreover, we found that SLC25A35 upregulation is caused, at least in part, by decreased miR-663a in HCC cells. Together, our results suggest a crucial oncogenic role of SLC25A35 in HCC by reprogramming mitochondrial metabolism and suggest SLC25A35 as a potential therapeutic target for the treatment of HCC.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"130\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02109-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02109-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SLC25A35 enhances fatty acid oxidation and mitochondrial biogenesis to promote the carcinogenesis and progression of hepatocellular carcinoma by upregulating PGC-1α.
Mitochondria dysfunction has been closely linked to a wide spectrum of human cancers, whereas the molecular basis has yet to be fully understood. SLC25A35 belongs to the SLC25 family of mitochondrial carrier proteins. However, the role of SLC25A35 in mitochondrial metabolism reprogramming, development and progression in human cancers remains unclear. Here, we found that SLC25A35 markedly reprogramed mitochondrial metabolism, characterized by increased oxygen consumption rate and ATP production and decreased ROS level, via enhancing fatty acid oxidation (FAO). Meanwhile, SLC25A35 also enhanced mitochondrial biogenesis characterized by increased mitochondrial mass and DNA content. Mechanistic studies revealed that SLC25A35 facilitated FAO and mitochondrial biogenesis through upregulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) via increasing acetyl-CoA-mediated acetylation of PGC-1α. Clinically, SLC25A35 was highly expressed in HCC and correlated with adverse patients' survival. Functionally, SLC25A35 promoted the proliferation and metastasis of HCC cells both in vitro and in vivo, as well as the carcinogenesis in a DEN-induced HCC mice model. Moreover, we found that SLC25A35 upregulation is caused, at least in part, by decreased miR-663a in HCC cells. Together, our results suggest a crucial oncogenic role of SLC25A35 in HCC by reprogramming mitochondrial metabolism and suggest SLC25A35 as a potential therapeutic target for the treatment of HCC.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.