{"title":"RPT:用于分割和量化根系结构的综合根系表型工具箱","authors":"Jiawei Shi, Shangyuan Xie, Weikun Li, Xin Wang, Jianglin Wang, Yunyu Chen, Yongyue Chang, Qiaojun Lou, Wanneng Yang","doi":"10.1111/pbi.70040","DOIUrl":null,"url":null,"abstract":"SummaryThe dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high‐throughput root phenotyping poses a great challenge. In this study, we established a cost‐effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits. Based on this root phenotyping platform and RPT, we screened 18 candidate (quantitative trait loci) QTL regions from 219 rice recombinant inbred lines under drought stress and validated the drought‐resistant functions of gene <jats:italic>OsIAA8</jats:italic> identified from these QTL regions. This study confirmed that RPT exhibited a great application potential for processing images with various sources and for mining stress‐resistance genes of rice cultivars. Our developed root phenotyping platform and RPT software significantly improved high‐throughput root phenotyping efficiency, allowing for large‐scale root trait analysis, which will promote the genetic architecture improvement of drought‐resistant cultivars and crop breeding research in the future.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RPT: An integrated root phenotyping toolbox for segmenting and quantifying root system architecture\",\"authors\":\"Jiawei Shi, Shangyuan Xie, Weikun Li, Xin Wang, Jianglin Wang, Yunyu Chen, Yongyue Chang, Qiaojun Lou, Wanneng Yang\",\"doi\":\"10.1111/pbi.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryThe dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high‐throughput root phenotyping poses a great challenge. In this study, we established a cost‐effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits. Based on this root phenotyping platform and RPT, we screened 18 candidate (quantitative trait loci) QTL regions from 219 rice recombinant inbred lines under drought stress and validated the drought‐resistant functions of gene <jats:italic>OsIAA8</jats:italic> identified from these QTL regions. This study confirmed that RPT exhibited a great application potential for processing images with various sources and for mining stress‐resistance genes of rice cultivars. Our developed root phenotyping platform and RPT software significantly improved high‐throughput root phenotyping efficiency, allowing for large‐scale root trait analysis, which will promote the genetic architecture improvement of drought‐resistant cultivars and crop breeding research in the future.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.70040\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70040","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
RPT: An integrated root phenotyping toolbox for segmenting and quantifying root system architecture
SummaryThe dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high‐throughput root phenotyping poses a great challenge. In this study, we established a cost‐effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits. Based on this root phenotyping platform and RPT, we screened 18 candidate (quantitative trait loci) QTL regions from 219 rice recombinant inbred lines under drought stress and validated the drought‐resistant functions of gene OsIAA8 identified from these QTL regions. This study confirmed that RPT exhibited a great application potential for processing images with various sources and for mining stress‐resistance genes of rice cultivars. Our developed root phenotyping platform and RPT software significantly improved high‐throughput root phenotyping efficiency, allowing for large‐scale root trait analysis, which will promote the genetic architecture improvement of drought‐resistant cultivars and crop breeding research in the future.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.