IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-03-14 DOI:10.1186/s12951-025-03248-7
Xiaoting Zhou, Jiaqi Liao, Zipeng Lei, Huiqin Yao, Le Zhao, Chun Yang, Yan Zu, Yuliang Zhao
{"title":"Nickel-based nanomaterials: a comprehensive analysis of risk assessment, toxicity mechanisms, and future strategies for health risk prevention.","authors":"Xiaoting Zhou, Jiaqi Liao, Zipeng Lei, Huiqin Yao, Le Zhao, Chun Yang, Yan Zu, Yuliang Zhao","doi":"10.1186/s12951-025-03248-7","DOIUrl":null,"url":null,"abstract":"<p><p>Nickel-based nanomaterials (NBNs) have seen a surge in usage across a variety of applications. However, the widespread use of NBNs has led to increased human exposure, raising questions about their associated health risks, both in the short and long term. Additionally, the spread of NBNs in the environment has attracted considerable attention, emerging as a vital focus for research and development. This review aims to provide an in-depth assessment of the current understanding of NBNs toxicity, the mechanisms underlying their toxicological effects, and the strategies for mitigating associated health risks. We begin by examining the physicochemical properties of NBNs, such as particle size, composition and surface functionalization, which are key determinants of their biological interactions and toxicity. Then, through an extensive analysis of in vitro and in vivo studies, we highlight the adverse effects of NBNs exposure, including the generation of reactive oxygen species (ROS), oxidative stress, inflammation, cytotoxicity, genotoxicity, and immunotoxicity. To address the potential health risks associated with NBNs, we propose future strategies for risk prevention, including the development of safer nanomaterial designs, implementation of stringent regulatory guidelines, and advancement of novel toxicity testing approaches.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"211"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03248-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镍基纳米材料(NBNs)在各种应用领域的使用激增。然而,镍基纳米材料的广泛使用已导致人类接触镍基纳米材料的机会增加,从而引发了短期和长期的相关健康风险问题。此外,国家宽带网络在环境中的传播也引起了相当大的关注,成为研究和开发的一个重要焦点。本综述旨在深入评估目前对 NBN 毒性的认识、其毒理学效应的机制以及降低相关健康风险的策略。我们首先研究了 NBN 的物理化学特性,如粒度、成分和表面功能化,这些是决定其生物相互作用和毒性的关键因素。然后,通过对体外和体内研究的广泛分析,我们强调了接触 NBNs 的不良影响,包括活性氧(ROS)的产生、氧化应激、炎症、细胞毒性、遗传毒性和免疫毒性。为了应对与纳米宽带网络相关的潜在健康风险,我们提出了未来的风险预防策略,包括开发更安全的纳米材料设计、实施严格的监管准则以及推进新型毒性测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nickel-based nanomaterials: a comprehensive analysis of risk assessment, toxicity mechanisms, and future strategies for health risk prevention.

Nickel-based nanomaterials (NBNs) have seen a surge in usage across a variety of applications. However, the widespread use of NBNs has led to increased human exposure, raising questions about their associated health risks, both in the short and long term. Additionally, the spread of NBNs in the environment has attracted considerable attention, emerging as a vital focus for research and development. This review aims to provide an in-depth assessment of the current understanding of NBNs toxicity, the mechanisms underlying their toxicological effects, and the strategies for mitigating associated health risks. We begin by examining the physicochemical properties of NBNs, such as particle size, composition and surface functionalization, which are key determinants of their biological interactions and toxicity. Then, through an extensive analysis of in vitro and in vivo studies, we highlight the adverse effects of NBNs exposure, including the generation of reactive oxygen species (ROS), oxidative stress, inflammation, cytotoxicity, genotoxicity, and immunotoxicity. To address the potential health risks associated with NBNs, we propose future strategies for risk prevention, including the development of safer nanomaterial designs, implementation of stringent regulatory guidelines, and advancement of novel toxicity testing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Correction: MSC microvesicles loaded G-quadruplex-enhanced circular single-stranded DNA-9 inhibits tumor growth by targeting MDSCs. Extracellular vesicles: a new frontier in diagnosing and treating graft-versus-host disease after allogeneic hematopoietic cell transplantation. Radiation-induced ferroptosis via liposomal delivery of 7-Dehydrocholesterol. Correction: Near-infrared light triggered in situ release of CO for enhanced therapy of glioblastoma. Dual-modality immune nano-activator harnessing Mn2⁺ and quercetin to potentiate the cGAS-STING pathway for advanced cancer metalloimmunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1