IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-03-12 DOI:10.1016/j.photonics.2025.101379
Omar A.M. Abdelraouf , Ahmed Mousa , Mohamed Ragab
{"title":"NanoPhotoNet: AI-enhanced design tool for reconfigurable and high-performance multi-layer metasurfaces","authors":"Omar A.M. Abdelraouf ,&nbsp;Ahmed Mousa ,&nbsp;Mohamed Ragab","doi":"10.1016/j.photonics.2025.101379","DOIUrl":null,"url":null,"abstract":"<div><div>Metasurfaces are crucial in advancing flat optics and nanophotonics, offering unique advantages in creating vibrant structural colors and high-Q factor cavities. Multi-layer metasurfaces (MLMs) take this further by enhancing light-matter interactions inside the single meta-atom at the nanoscale. However, optimizing MLM designs is challenging due to the complex interplay of many parameters, making traditional simulation methods slow and inefficient. In this work, we introduce NanoPhotoNet, an advanced AI-powered design tool that leverages a hybrid deep neural network (DNN) combining convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) models. NanoPhotoNet significantly accelerates the design process for MLMs, achieving over 98.3 % prediction accuracy and a 50,000x speed improvement compared to conventional techniques. This enables the creation of structural colors far beyond the standard RGB range, increasing the RGB gamut area up to 163 %. Additionally, NanoPhotoNet facilitates tunable color generation, extending the capabilities of MLMs to advanced applications like tunable color filters, nanolasers, and reconfigurable beam steering. This approach represents a transformative progress in metasurface design, unlocking new possibilities for high-performance, tunable nanophotonic devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101379"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102500029X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

元表面对于推动平面光学和纳米光子学的发展至关重要,它在创造鲜艳的结构色彩和高 Q 因子空腔方面具有独特的优势。多层元表面(MLM)通过在纳米尺度上增强单个元原子内部的光-物质相互作用,在此基础上更进一步。然而,由于许多参数的复杂相互作用,优化 MLM 设计具有挑战性,使得传统的模拟方法速度慢、效率低。在这项工作中,我们介绍了 NanoPhotoNet,这是一种先进的人工智能设计工具,它利用混合深度神经网络(DNN),结合了卷积神经网络(CNN)和长短期记忆(LSTM)模型。NanoPhotoNet 大大加快了多层膜的设计过程,预测准确率超过 98.3%,速度是传统技术的 50,000 倍。这使得结构色的创建远远超出了标准 RGB 范围,将 RGB 色域面积增加了 163%。此外,NanoPhotoNet 还促进了可调颜色的生成,将 MLM 的功能扩展到可调颜色滤波器、纳米激光器和可重构光束转向等高级应用。这种方法代表了超表面设计的变革性进展,为高性能、可调谐纳米光子器件带来了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NanoPhotoNet: AI-enhanced design tool for reconfigurable and high-performance multi-layer metasurfaces
Metasurfaces are crucial in advancing flat optics and nanophotonics, offering unique advantages in creating vibrant structural colors and high-Q factor cavities. Multi-layer metasurfaces (MLMs) take this further by enhancing light-matter interactions inside the single meta-atom at the nanoscale. However, optimizing MLM designs is challenging due to the complex interplay of many parameters, making traditional simulation methods slow and inefficient. In this work, we introduce NanoPhotoNet, an advanced AI-powered design tool that leverages a hybrid deep neural network (DNN) combining convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) models. NanoPhotoNet significantly accelerates the design process for MLMs, achieving over 98.3 % prediction accuracy and a 50,000x speed improvement compared to conventional techniques. This enables the creation of structural colors far beyond the standard RGB range, increasing the RGB gamut area up to 163 %. Additionally, NanoPhotoNet facilitates tunable color generation, extending the capabilities of MLMs to advanced applications like tunable color filters, nanolasers, and reconfigurable beam steering. This approach represents a transformative progress in metasurface design, unlocking new possibilities for high-performance, tunable nanophotonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
期刊最新文献
NanoPhotoNet: AI-enhanced design tool for reconfigurable and high-performance multi-layer metasurfaces Compact hybrid waveguide optical switch with low loss and high extinction ratio based on Ge2Sb2Te5 Unlocking Cesium based new double absorber perovskite solar cells with efficiency above 28 % for next generation solar cell Polarization controllable multi-window electromagnetically induced transparency-like in a graphene metamaterial Tunable NIR nano-absorber based on photothermal response and thermoplasmonic modulation of Au@GSST core-shell nanoparticle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1