{"title":"Stochastic axionlike curvaton: Non-Gaussianity and primordial black holes without a large power spectrum","authors":"Chao Chen, Anish Ghoshal, Gianmassimo Tasinato, Eemeli Tomberg","doi":"10.1103/physrevd.111.063539","DOIUrl":null,"url":null,"abstract":"We discuss a mechanism of primordial black hole (PBH) formation that does not require specific features in the inflationary potential, revisiting previous literature. In this mechanism, a light spectator field evolves stochastically during inflation and remains subdominant during the post-inflationary era. Even though the curvature power spectrum stays small at all scales, rare perturbations of the field probe a local maximum in its potential, leading to non-Gaussian tails in the distribution of curvature fluctuations, and to copious PBH production. For a concrete axionlike particle (ALP) scenario we analytically determine the distribution of the compaction function for perturbations, showing that it is characterized by a heavy tail, which produces an extended PBH mass distribution. We find the ALP mass and decay constant to be correlated with the PBH mass, for instance, an ALP with a mass m</a:mi></a:mrow>a</a:mi></a:mrow></a:msub>=</a:mo>5.4</a:mn>×</a:mo>10</a:mn></a:mrow>14</a:mn></a:mrow></a:msup></a:mtext></a:mtext>eV</a:mi></a:mrow></a:mrow></a:math> and a decay constant <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>f</c:mi></c:mrow><c:mrow><c:mi>a</c:mi></c:mrow></c:msub><c:mo>=</c:mo><c:mrow><c:mn>4.6</c:mn><c:mo>×</c:mo><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>5</c:mn></c:mrow></c:msup><c:mtext> </c:mtext></c:mrow><c:msub><c:mrow><c:mi>M</c:mi></c:mrow><c:mrow><c:mi>Pl</c:mi></c:mrow></c:msub></c:mrow></c:math> can lead to PBHs of mass <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msub><e:mrow><e:mi>M</e:mi></e:mrow><e:mrow><e:mi>PBH</e:mi></e:mrow></e:msub><e:mo>=</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>21</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi mathvariant=\"normal\">g</e:mi></e:mrow></e:math> as the entire dark matter of the universe, and is testable in future PBH observations via lensing in the Nancy Grace Roman Space Telescope and mergers detectable in the Laser Interferometer Space Antenna and Einstein Telescope gravitational wave detectors. We then extend our analysis to mixed ALP and PBH dark matter and Higgs-like spectator fields. We find that PBHs cluster strongly over all cosmological scales, clashing with cosmic microwave background isocurvature bounds. We argue that this problem is shared by all PBH production from inflationary models that depend solely on large non-Gaussianity without a peak in the curvature power spectrum and discuss possible remedies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"34 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063539","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
我们讨论了一种原始黑洞(PBH)的形成机制,它不需要暴胀势中的特定特征,并对以前的文献进行了重温。在这一机制中,一个轻的旁观者场在膨胀过程中随机演化,并在后膨胀时代保持次主导地位。尽管曲率功率谱在所有尺度上都保持较小,但该场的罕见扰动会探测到其势能的局部最大值,从而导致曲率波动分布中的非高斯尾,并产生大量 PBH。对于一个具体的类轴子粒子(ALP)情景,我们分析测定了扰动的压实函数分布,结果表明它的特点是有一个重尾,从而产生了一个扩展的 PBH 质量分布。我们发现 ALP 的质量和衰变常数与 PBH 的质量相关,例如,质量 ma=5.4×1014eV 和衰变常数 fa=4.6×10-5 MPl 的 ALP 可以导致质量 MPBH=1021 g 的 PBH,作为整个宇宙的暗物质,并且可以在未来的 PBH 观测中通过南希-格雷斯-罗曼太空望远镜的透镜以及激光干涉仪太空天线和爱因斯坦望远镜引力波探测器探测到的合并进行检验。然后,我们将分析扩展到混合 ALP 和 PBH 暗物质以及类希格斯谱场。我们发现,PBH 在所有宇宙学尺度上都有强烈的聚类,这与宇宙微波背景等曲率边界相冲突。我们认为这个问题与所有仅依赖于大非高斯性而没有曲率功率谱峰值的暴胀模型产生的 PBH 都有相同之处,并讨论了可能的补救措施。 美国物理学会出版 2025
Stochastic axionlike curvaton: Non-Gaussianity and primordial black holes without a large power spectrum
We discuss a mechanism of primordial black hole (PBH) formation that does not require specific features in the inflationary potential, revisiting previous literature. In this mechanism, a light spectator field evolves stochastically during inflation and remains subdominant during the post-inflationary era. Even though the curvature power spectrum stays small at all scales, rare perturbations of the field probe a local maximum in its potential, leading to non-Gaussian tails in the distribution of curvature fluctuations, and to copious PBH production. For a concrete axionlike particle (ALP) scenario we analytically determine the distribution of the compaction function for perturbations, showing that it is characterized by a heavy tail, which produces an extended PBH mass distribution. We find the ALP mass and decay constant to be correlated with the PBH mass, for instance, an ALP with a mass ma=5.4×1014eV and a decay constant fa=4.6×10−5MPl can lead to PBHs of mass MPBH=1021g as the entire dark matter of the universe, and is testable in future PBH observations via lensing in the Nancy Grace Roman Space Telescope and mergers detectable in the Laser Interferometer Space Antenna and Einstein Telescope gravitational wave detectors. We then extend our analysis to mixed ALP and PBH dark matter and Higgs-like spectator fields. We find that PBHs cluster strongly over all cosmological scales, clashing with cosmic microwave background isocurvature bounds. We argue that this problem is shared by all PBH production from inflationary models that depend solely on large non-Gaussianity without a peak in the curvature power spectrum and discuss possible remedies. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.